Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-platelet drug blocks bone metastases in mice

04.11.2003


Treatment also slows development of other tumors



Researchers at Washington University School of Medicine in St. Louis have dramatically slowed the metastatic spread of a highly malignant tumor in mice by disabling platelets with an experimental drug.

Based on earlier experiments, scientists had hoped the drug, ML464, would block the spread of a melanoma cell line into bones. They were pleasantly surprised to find that not only did the treatment block bone metastases, it also reduced the development of new tumors in organs like the liver, intestines and kidney.


"Bone metastases appear in 75 percent of all patients who develop metastatic breast and prostate cancer," says Katherine Weilbaecher, M.D., assistant professor of medicine and of pathology and immunology. "These metastatic tumors can be very painful and weaken the bone to the point of fracture."

Weilbaecher, the principal investigator in the new study, cautions that while it might be possible to use ML464 or other anti-platelet drugs to achieve the same effect in humans, such treatments have not been tested for their anti-metastatic effects yet and would leave patients at risk of bleeding. "This is a very exciting start, but it’s just the beginning," says Weilbaecher. "The more we can understand this, the more narrowly we can target our therapy and explore the possibility that we might be able to block metastasis and only partially block clotting function."

The results are published today in the online early edition of the Proceedings of the National Academy of Sciences.

Weilbaecher’s research group has been studying connections between bone metastases and osteoclasts, cells in bone marrow that normally break down the materials in bone for routine replacement. Scientists suspected that osteoclasts aid tumors’ destruction of bone because they can make acid, an essential ingredient for breaking into bone.

Suzanne Bakewell, a Ph.D. graduate student in Weilbaecher’s lab, led a series of experiments in mice that began with a test of the potential link between osteoclasts and bone metastases. After genetically disabling a protein important to osteoclasts, beta3 integrin, researchers injected the mice with melanoma tumor cells altered to produce a black pigment that makes them easy to spot.

"This is a very virulent cancer cell line," Weilbaecher says. "In 14 days, 75 to 80 percent of normal mice injected with these cells will have disseminated tumors throughout the body, including their bones and bone marrow, the spongy material inside bones that produces blood cells."

In contrast, the experimental mice lacking the beta3 integrin developed tumors in other parts of the body but had no tumor cells in their bones or bone marrow.

Because beta3 integrin is known to have a prominent role in other tissues of the body, the group then conducted an experiment involving bone marrow transplants from the genetically engineered mice into normal mice. The transplants protected normal mice from bone and bone marrow tumors, proving that the protective effects came from factors in the bone marrow, the place where osteoclasts are found.

However, the next experiment, conducted on mice genetically engineered with a defect very specific to osteoclasts, failed to produce equal levels of cancer protection. The tumors couldn’t get into the bone itself, but they proliferated in the bone marrow.

"We were completely surprised by this," Weilbaecher says. "Blocking osteoclast function still seemed to be linked to less bone destruction by bone metastases, but that didn’t tell us why these mice developed so many tumors in the bone marrow while mice with defective beta3 integrin didn’t."

The group then turned to the next most likely cause of the protective effect: platelets, bits of membrane in the bloodstream that clump together to form blood clots. Like osteoclasts, they are produced in bone marrow, and a form of beta3 integrin plays a prominent role in their activity. Other researchers have linked platelets to the spread of lung tumors, and patients with metastatic cancer frequently have high platelet counts and excessive blood-clotting activity.

Weilbaecher’s group treated experimental mice with high doses of ML464, which specifically blocks the form of beta3 integrin found on platelets. They dosed the mice every12 hours for the first two and a half days of the 14-day experiment.

"We gave the mice a dose of ML464 that would block all platelet aggregation," says Weilbaecher. "During this period, they were very susceptible to bleeding. No surgeon would have wanted to operate on them."

Injected cancer cells given to the experimental mice thirty minutes after the anti-clotting drug never made it into the bone or bone marrow, and were rarely able to find a foothold elsewhere and start building a tumor.

"The mice treated with the drug had much fewer metastases, and when they did get metastases they were smaller," Weilbaecher says. "There are other drugs that block platelet beta 3 integrin that are routinely used in patients who receive coronary artery stents, so this is definitely something that’s worth exploring for potential clinical application."

Weilbaecher and others are working on several hypotheses for how platelets may help tumor cells metastasize. Most theories assume that platelets bind to tumor cells circulating in the bloodstream, and then begin to bind to other platelets, gathering tumor cells together. The platelets may hide tumor cells from the immune system, supply them with essential growth factors or just provide them with a ride.

"An aspirin a day is a very potent blocker of platelet function--it can impact survival in heart attack patients, because you get less clotting. And you don’t need very much dosage to reduce cardiac risk," Weilbaecher notes. "Here, for metastasis prevention, I can’t tell you if we need a lot of this anti-platelet effect or a little, or whether other drugs like aspirin or ticlopodine would be effective. That hasn’t been explored yet in this model, but it will be."


Bakewell SJ, Nestor P, Prasad S, Dowland N, Mehrotra M, Scarborough R, Kanter J, Abe K, Phillips D, Weilbaecher K. Platelet and osteoclast B3 integrins are critical for bone metastasis. Proceedings of the National Academy Sciences, early online edition, November 3, 2003.

Funding from National Institutes of Health, National Institute on Aging, the Barnes Jewish Foundation Grant and the Edward G. Mallinckrodt, Jr foundation Grant.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>