Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug Improves Brain Structure in Alzheimer’s Patients

03.11.2003


Researchers at Duke University Medical Center have determined that a medication commonly prescribed for mild to moderate Alzheimer’s disease (AD) appears to cause physical improvements in the hippocampus and other brain regions of patients with the disease. These improvements could explain why the drug, donepezil (trade name Aricept), a cholinesterase inhibitor, is beneficial in treating the symptoms of some Alzheimer’s patients, the researchers said.



The findings were made by using magnetic resonance (MR) technology to track brain changes among patients taking the drug. According to the researchers, this is the first time MR has been used to observe the effects of a medication on brain structures of patients living with AD. The feasibility of using MR for such studies is likely to improve future research into treatments for AD and other brain disorders, the researchers said.

The study results appear in the Nov. 1, 2003, issue of the American Journal of Psychiatry.


"We wanted to know if the drugs available for Alzheimer’s disease alter the brain or the progression of the disease in any way," said Ranga Krishnan, M.D., lead author of the study and chief of psychiatry at Duke University Medical Center. "We discovered that, among the patients taking donepezil, levels of a brain chemical called N-acetylaspartate increased and the hippocampus deteriorated more slowly than among the patients who received a placebo. The implication is that we may be able to do something to change the progression of this disease."

The researchers believe the drug may have a protective effect on the brains of Alzheimer’s patients because it appears to slow the progression of the disease by reducing atrophy in the hippocampus, a region of the brain that is critical to memory function and is affected earliest in AD.

"When someone has Alzheimer’s disease, the brain begins to deteriorate as the gray matter shrinks and the disease progresses," Krishnan said. "We are unsure of why and how donepezil slowed the loss of hippocampal volume but we think the drug may help to improve cognition by increasing the levels of N-acetylaspartate in the brain, at least temporarily."

This is important, the researchers say, because the data raise the possibility that a medication could affect the progression of brain changes in Alzheimer’s disease.

According to the researchers, this is the first longitudinal study to use magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (MRS) to assess brain function and the impact of a medication upon brain structures of patients with AD.

The study is a follow up to the team’s 1999 report that MRS could be used to track levels of the brain chemical called N-acetylaspartate, an amino acid found in the neurons of the central nervous system in patients with AD. The team had determined that the chemical could serve as a useful "marker" of the functional and structural integrity of neurons when proton magnetic resonance spectroscopy is used to view brain structures.

Since MR had already proven to be an excellent tool for observing function and the changes in brain structures affected by AD, Krishnan and his team wondered if it would be possible to see how a drug affects those same structures.

In the patients enrolled in this study, the researchers discovered that hippocampal volume decreased by 8.2 percent in the placebo group compared with a 0.4 percent decrease in those taking donepezil. Those on placebo also showed evidence of declining concentrations of N-acetylaspartate along with some cognitive decline. Those in the donepezil group showed evidence of increasing levels of N-acetylaspartate concentrations in two brain regions, the subcortical gray matter and the periventricular matter, which peaked between weeks six and 18. Donepezil treatment was associated with significantly greater improvements in cognition, relative to placebo, at every point during the study.

Among those on placebo, the researchers found a significant relationship between the decline in N-acetylaspartate concentrations in the noncortical gray matter region of the brain and reductions in the patients’ scores on cognition tests. The drug appeared to increase concentrations of N-acetylaspartate, although the mechanisms that underlie this are uncertain. The researchers are also unsure why donepezil appears to slow the deterioration of hippocampal tissue, uncertainty they say is compounded by a general lack of understanding about the cause of neuron loss in Alzheimer’s disease.

The researchers enrolled 67 patients aged 50 and older with a diagnosis of mild to moderate AD. Prior to the study, all of the participants received a comprehensive medical examination and verification of an Alzheimer’s disease diagnosis. At baseline, the physical exam was repeated and an MRI scan of the brain was performed. Patients were administered two identical pills - either donepezil or placebo - each evening for 24 weeks. Patients in the donepezil group received 5 milligrams per day (a 5 milligram pill plus a dummy pill) for the first 28 days and 10 milligrams (two 5 milligram pills) per day thereafter. Daily doses consisted of two identical tablets so as to not reveal the dosage scheme.

The randomized, double-blind, placebo-controlled study was conducted over a 24-week period followed by a six-week period in which all participants received only placebo pills. Each participant was treated and clinically evaluated at one of three outpatient sites – Duke University Medical Center, the Medical University of South Carolina or a private psychiatrist’s office in Raleigh, N.C. All of the MR scans were performed at Duke University Medical Center and all data were processed by the Duke Image Analysis Laboratory.

Patients were required to return at 6-week intervals for routine physical examinations, laboratory assessments, a medication compliance check, adverse events monitoring and an MRI scan. Of the 67 participants who enrolled, 34 received donepezil and 33 were given placebo. Fifty-one patients (76 percent) completed the study. Ten patients (30 percent) in the placebo group discontinued the study compared with six (18 percent) from the donepezil group.

"The study was challenging in that subjects were required to be scanned every six weeks and the MRI methods needed to be standardized," said Cecil Charles, co-director of the Center for Advanced Magnetic Resonance Development at Duke. "This study will set the stage for more effective studies of medications used for Alzheimer’s disease.

"Clearly, more effective treatments are needed for Alzheimer’s disease," Charles added. "This study further suggests that MRI and MRS may be useful tools to assess brain changes in patients with Alzheimer’s disease."

The researchers stressed the limitations of their study, saying additional placebo-controlled studies with larger numbers of patients are necessary to confirm and expand their findings.

Alzheimer’s disease is the most common form of dementia among Americans over the age of 80. Donepezil is one of four drugs currently approved by the Food and Drug Administration for the treatment of mild to moderate Alzheimer’s disease.

Research funding for the study was provided by Eisai Inc., Teaneck, N.J., and Pfizer Inc., New York. Additional study investigators include Duke’s P. Murali Doraiswamy, M.D.; Jacobo Mintzer, M.D., Medical University of South Carolina; Richard Weisler, M.D., an adjunct professor at Duke in private practice in Raleigh, N.C.; Xin Yu, Ph.D., University of Washington, St. Louis; Carlos Perdomo and John R. Ieni, Ph.D., Eisai; and Sharon Rogers, Ph.D., who was employed by Eisai at the time of the study.

Tracey Koepke | Duke University Medical Center
Further information:
http://www.mc.duke.edu

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>