Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU doctors use ’putty’ to prevent hemorrhagic stroke

31.10.2003


Oregon patients are first on West Coast to take part in clinical trial



Two Oregon Health & Science University patients are the first on the West Coast to receive a new stroke prevention treatment that uses a spongy, polymer compound to seal a brain aneurysm.

The patients, Joyce Turner, 68, of Kings Valley and Rob Pardee, 48, of Talent, underwent back-to-back procedures Oct. 23 at OHSU Hospital to repair aneurysms – weakened areas of an artery wall that balloon out and fill with fluid – that were at risk of rupturing. Both were able to go home the next day.


Stanley L. Barnwell, M.D., Ph.D., associate professor of neurological surgery in the OHSU School of Medicine and the Dotter Interventional Institute, performed the procedure on Turner and Pardee as part of a 120-patient clinical trial for the new Onyx Liquid Embolic System, developed by Irvine, Calif.-based Micro Therapeutics Inc. (MTI).

The Oregon Stroke Center at OHSU is one of 10 sites nationwide participating in the clinical trial for Onyx. Wayne M. Clark, M.D., professor of neurology in OHSU’s School of Medicine and the Dotter Interventional Institute, as well as the Oregon Stroke Center’s director, is the principal investigator of a study that will compare the Onyx procedure with other aneurysm treatments, such as coiling.

Using a catheter fed from the groin to a carotid artery in the brain, Barnwell locates the aneurysm and injects the Onyx liquid into the sac. When the liquid comes in contact with blood or body fluids, according to MTI, a solvent rapidly diffuses from the liquid, transforming it into a spongy, polymer mass that displaces the blood in the sac and seals off the defect. The solvent, dimethyl sulfoxide, or DMSO, is derived from lignin, a compound found in woody plants.

"It’s a little bit like placing putty in a hole in the wall," Barnwell said. "It if stops an aneurysm from growing back, it’ll be very useful."

Indeed, Turner and Pardee say, before-and-after images of their aneurysms – Turner’s was in her right internal carotid artery, behind her eye under the frontal lobe, and Pardee’s was in his left internal carotid artery, also behind the eye – appear to show the malformations are gone.

"My before-and-after pictures are incredible," Pardee said. "You can’t tell it’s there. I saw that and I thought, ’Yeah, OK, this is good!’"

Turner had a similar response: "I was amazed it made the aneurysm much smaller," she said of the procedure. "It did seem like it drew it down. Now there’s just a hump instead of a balloon. It’s good stuff."

Had the aneurysms burst, the likely result would have been a subarachnoid hemorrhage, a type of stroke in which blood escapes into the space between the brain and the skull, cutting off its flow to the brain.

A common treatment for an aneurysm is coiling, in which a tiny platinum coil is inserted into the sac through a catheter and deployed, restricting blood flow into the malformation. But the coil can fall out of the sac and back into the artery, and sometimes blood flow into the sac isn’t fully restricted.

"Coils can stick out, and sometimes you can’t get the coil where you need it," Clark said. And there is a 20 percent aneurysm recurrence rate among coiling patients.

But in the Onyx procedure, an angioplasty balloon can be used to hold the liquid inside the sac while it’s being injected, preventing it from falling out before it solidifies.

"The balloon keeps it out of the artery and once it hardens, the balloon is deflated and it stays there," Barnwell said.

The other solution for an aneurysm is surgical clipping, in which a tiny metal clip is placed on the neck of the aneurysm to pinch off blood flow into the sac. But the clip stays in the patient forever, and the procedure requires brain surgery and months of recovery.

The Onyx procedure takes the same amount of time as coiling – about an hour – although it’s more complex. "But once we get some experience with it, it’ll become routine," Barnwell said.

Clark, who says the Onyx material looks and acts like "squishy rubber cement," believes the new procedure will have significant advantages over invasive brain surgery and, perhaps, coiling. "Whether it’s better than coiling, that’s what the study is evaluating," he said. "It certainly looks very promising."

In the meantime, Turner and Pardee look forward to speedy recoveries.

"From being active and doing everything to being down and not doing anything, I was ready for any cure," said Turner, who hopes the Onyx procedure helps alleviate the headaches, dizziness and fatigue she’s been experiencing the last several months. "I just want my last few years to be quality time."

Said Pardee, who’s also suffered from headaches: "Like the doctor says, ’Maybe it’ll get rid of the headaches, maybe it won’t. But (the aneurysm) will kill you someday.’ Normally, you don’t get a chance to take care of things like that ahead of time. It’s phenomenal what they can do."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>