Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU doctors use ’putty’ to prevent hemorrhagic stroke

31.10.2003


Oregon patients are first on West Coast to take part in clinical trial



Two Oregon Health & Science University patients are the first on the West Coast to receive a new stroke prevention treatment that uses a spongy, polymer compound to seal a brain aneurysm.

The patients, Joyce Turner, 68, of Kings Valley and Rob Pardee, 48, of Talent, underwent back-to-back procedures Oct. 23 at OHSU Hospital to repair aneurysms – weakened areas of an artery wall that balloon out and fill with fluid – that were at risk of rupturing. Both were able to go home the next day.


Stanley L. Barnwell, M.D., Ph.D., associate professor of neurological surgery in the OHSU School of Medicine and the Dotter Interventional Institute, performed the procedure on Turner and Pardee as part of a 120-patient clinical trial for the new Onyx Liquid Embolic System, developed by Irvine, Calif.-based Micro Therapeutics Inc. (MTI).

The Oregon Stroke Center at OHSU is one of 10 sites nationwide participating in the clinical trial for Onyx. Wayne M. Clark, M.D., professor of neurology in OHSU’s School of Medicine and the Dotter Interventional Institute, as well as the Oregon Stroke Center’s director, is the principal investigator of a study that will compare the Onyx procedure with other aneurysm treatments, such as coiling.

Using a catheter fed from the groin to a carotid artery in the brain, Barnwell locates the aneurysm and injects the Onyx liquid into the sac. When the liquid comes in contact with blood or body fluids, according to MTI, a solvent rapidly diffuses from the liquid, transforming it into a spongy, polymer mass that displaces the blood in the sac and seals off the defect. The solvent, dimethyl sulfoxide, or DMSO, is derived from lignin, a compound found in woody plants.

"It’s a little bit like placing putty in a hole in the wall," Barnwell said. "It if stops an aneurysm from growing back, it’ll be very useful."

Indeed, Turner and Pardee say, before-and-after images of their aneurysms – Turner’s was in her right internal carotid artery, behind her eye under the frontal lobe, and Pardee’s was in his left internal carotid artery, also behind the eye – appear to show the malformations are gone.

"My before-and-after pictures are incredible," Pardee said. "You can’t tell it’s there. I saw that and I thought, ’Yeah, OK, this is good!’"

Turner had a similar response: "I was amazed it made the aneurysm much smaller," she said of the procedure. "It did seem like it drew it down. Now there’s just a hump instead of a balloon. It’s good stuff."

Had the aneurysms burst, the likely result would have been a subarachnoid hemorrhage, a type of stroke in which blood escapes into the space between the brain and the skull, cutting off its flow to the brain.

A common treatment for an aneurysm is coiling, in which a tiny platinum coil is inserted into the sac through a catheter and deployed, restricting blood flow into the malformation. But the coil can fall out of the sac and back into the artery, and sometimes blood flow into the sac isn’t fully restricted.

"Coils can stick out, and sometimes you can’t get the coil where you need it," Clark said. And there is a 20 percent aneurysm recurrence rate among coiling patients.

But in the Onyx procedure, an angioplasty balloon can be used to hold the liquid inside the sac while it’s being injected, preventing it from falling out before it solidifies.

"The balloon keeps it out of the artery and once it hardens, the balloon is deflated and it stays there," Barnwell said.

The other solution for an aneurysm is surgical clipping, in which a tiny metal clip is placed on the neck of the aneurysm to pinch off blood flow into the sac. But the clip stays in the patient forever, and the procedure requires brain surgery and months of recovery.

The Onyx procedure takes the same amount of time as coiling – about an hour – although it’s more complex. "But once we get some experience with it, it’ll become routine," Barnwell said.

Clark, who says the Onyx material looks and acts like "squishy rubber cement," believes the new procedure will have significant advantages over invasive brain surgery and, perhaps, coiling. "Whether it’s better than coiling, that’s what the study is evaluating," he said. "It certainly looks very promising."

In the meantime, Turner and Pardee look forward to speedy recoveries.

"From being active and doing everything to being down and not doing anything, I was ready for any cure," said Turner, who hopes the Onyx procedure helps alleviate the headaches, dizziness and fatigue she’s been experiencing the last several months. "I just want my last few years to be quality time."

Said Pardee, who’s also suffered from headaches: "Like the doctor says, ’Maybe it’ll get rid of the headaches, maybe it won’t. But (the aneurysm) will kill you someday.’ Normally, you don’t get a chance to take care of things like that ahead of time. It’s phenomenal what they can do."

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

nachricht Improving memory with magnets
28.03.2017 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>