Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIAMS Researchers Collaborate to Produce Targeted Immunosuppressant Drug

31.10.2003


Investigators at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Pfizer Global Research and Development and Stanford University have collaborated in studying a new immunosuppressant drug, CP-690,550, that may avoid some of the common side effects associated with other medications that curb the immune system. The new drug, discovered by Pfizer researchers, may be of major importance for those who are treated with immunosuppressants for organ transplants or autoimmune diseases.



John O’Shea, M.D., Yong-Jie Zhou, M.D., and their team in the NIAMS Molecular Immunology and Inflammation Branch joined scientists from Pfizer and Stanford in developing and studying the drug. CP-690,550 was tested in mice with heart transplants and in monkeys with kidney transplants done by Stanford. In both cases, animals treated with CP-690,550 survived much longer than untreated animals. None of the treated animals showed signs of such immunosuppressant side effects as increased cholesterol, blood sugar, blood pressure or increased white blood cell count. The animals also showed no significant decreases in white blood cells or platelets.

The new drug, reported in the journal Science, inhibits the enzyme Jak3, a protein discovered by the NIAMS team in 1994 that is found only in immune system cells. The new study shows that inhibiting this enzyme has the effect of suppressing the immune system, while not affecting other systems of the body. Current immunosuppressant drugs target enzymes found in cells throughout the body, resulting in the toxic side effects. The Jak3 inhibitor has the advantage of selectively targeting a protein that only has effects on immune cells.


The finding culminates a long process of research and discovery by the NIAMS team. After discovering Jak3, the team demonstrated that this protein, called a kinase, was critical for the cell signaling process resulting in the development of infection-fighting white blood cells. They went on to show that the mutation of the gene encoding Jak3 was responsible for a form of severe combined immunodeficiency (SCID). Because Jak3 is essential for immune cell function, and because its expression is limited to blood cells, the team proposed that inhibiting Jak3 might be the basis for a new class of immunosuppressant drugs. The group then entered into a collaborative research and development agreement with Pfizer — a partnership that has enabled Pfizer to develop this new drug.

CP-690,550 is the first Jak3 inhibitor to show positive results in primates. Further animal studies are being conducted to determine if this drug could be used successfully and safely in humans.

Immunosuppressant drugs, which inhibit the body’s immune response, are given to prevent the body from rejecting transplanted organs, and are also used to treat autoimmune diseases such as lupus, rheumatoid arthritis, eczema and psoriasis. Autoimmune diseases cause the immune system to attack healthy, normal tissue as if it were a foreign substance. The finding that CP-690,550 selectively suppresses the immune response in transplant rejection with minimal toxicity also suggests that a Jak3 inhibitor might be useful in the treatment of autoimmune diseases.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Ray Fleming | NIH News
Further information:
http://www.nih.gov/news/pr/oct2003/niams-30.htm
http://www.niams.nih.gov.

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>