Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIAMS Researchers Collaborate to Produce Targeted Immunosuppressant Drug

31.10.2003


Investigators at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Pfizer Global Research and Development and Stanford University have collaborated in studying a new immunosuppressant drug, CP-690,550, that may avoid some of the common side effects associated with other medications that curb the immune system. The new drug, discovered by Pfizer researchers, may be of major importance for those who are treated with immunosuppressants for organ transplants or autoimmune diseases.



John O’Shea, M.D., Yong-Jie Zhou, M.D., and their team in the NIAMS Molecular Immunology and Inflammation Branch joined scientists from Pfizer and Stanford in developing and studying the drug. CP-690,550 was tested in mice with heart transplants and in monkeys with kidney transplants done by Stanford. In both cases, animals treated with CP-690,550 survived much longer than untreated animals. None of the treated animals showed signs of such immunosuppressant side effects as increased cholesterol, blood sugar, blood pressure or increased white blood cell count. The animals also showed no significant decreases in white blood cells or platelets.

The new drug, reported in the journal Science, inhibits the enzyme Jak3, a protein discovered by the NIAMS team in 1994 that is found only in immune system cells. The new study shows that inhibiting this enzyme has the effect of suppressing the immune system, while not affecting other systems of the body. Current immunosuppressant drugs target enzymes found in cells throughout the body, resulting in the toxic side effects. The Jak3 inhibitor has the advantage of selectively targeting a protein that only has effects on immune cells.


The finding culminates a long process of research and discovery by the NIAMS team. After discovering Jak3, the team demonstrated that this protein, called a kinase, was critical for the cell signaling process resulting in the development of infection-fighting white blood cells. They went on to show that the mutation of the gene encoding Jak3 was responsible for a form of severe combined immunodeficiency (SCID). Because Jak3 is essential for immune cell function, and because its expression is limited to blood cells, the team proposed that inhibiting Jak3 might be the basis for a new class of immunosuppressant drugs. The group then entered into a collaborative research and development agreement with Pfizer — a partnership that has enabled Pfizer to develop this new drug.

CP-690,550 is the first Jak3 inhibitor to show positive results in primates. Further animal studies are being conducted to determine if this drug could be used successfully and safely in humans.

Immunosuppressant drugs, which inhibit the body’s immune response, are given to prevent the body from rejecting transplanted organs, and are also used to treat autoimmune diseases such as lupus, rheumatoid arthritis, eczema and psoriasis. Autoimmune diseases cause the immune system to attack healthy, normal tissue as if it were a foreign substance. The finding that CP-690,550 selectively suppresses the immune response in transplant rejection with minimal toxicity also suggests that a Jak3 inhibitor might be useful in the treatment of autoimmune diseases.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Ray Fleming | NIH News
Further information:
http://www.nih.gov/news/pr/oct2003/niams-30.htm
http://www.niams.nih.gov.

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>