Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIAMS Researchers Collaborate to Produce Targeted Immunosuppressant Drug

31.10.2003


Investigators at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Pfizer Global Research and Development and Stanford University have collaborated in studying a new immunosuppressant drug, CP-690,550, that may avoid some of the common side effects associated with other medications that curb the immune system. The new drug, discovered by Pfizer researchers, may be of major importance for those who are treated with immunosuppressants for organ transplants or autoimmune diseases.



John O’Shea, M.D., Yong-Jie Zhou, M.D., and their team in the NIAMS Molecular Immunology and Inflammation Branch joined scientists from Pfizer and Stanford in developing and studying the drug. CP-690,550 was tested in mice with heart transplants and in monkeys with kidney transplants done by Stanford. In both cases, animals treated with CP-690,550 survived much longer than untreated animals. None of the treated animals showed signs of such immunosuppressant side effects as increased cholesterol, blood sugar, blood pressure or increased white blood cell count. The animals also showed no significant decreases in white blood cells or platelets.

The new drug, reported in the journal Science, inhibits the enzyme Jak3, a protein discovered by the NIAMS team in 1994 that is found only in immune system cells. The new study shows that inhibiting this enzyme has the effect of suppressing the immune system, while not affecting other systems of the body. Current immunosuppressant drugs target enzymes found in cells throughout the body, resulting in the toxic side effects. The Jak3 inhibitor has the advantage of selectively targeting a protein that only has effects on immune cells.


The finding culminates a long process of research and discovery by the NIAMS team. After discovering Jak3, the team demonstrated that this protein, called a kinase, was critical for the cell signaling process resulting in the development of infection-fighting white blood cells. They went on to show that the mutation of the gene encoding Jak3 was responsible for a form of severe combined immunodeficiency (SCID). Because Jak3 is essential for immune cell function, and because its expression is limited to blood cells, the team proposed that inhibiting Jak3 might be the basis for a new class of immunosuppressant drugs. The group then entered into a collaborative research and development agreement with Pfizer — a partnership that has enabled Pfizer to develop this new drug.

CP-690,550 is the first Jak3 inhibitor to show positive results in primates. Further animal studies are being conducted to determine if this drug could be used successfully and safely in humans.

Immunosuppressant drugs, which inhibit the body’s immune response, are given to prevent the body from rejecting transplanted organs, and are also used to treat autoimmune diseases such as lupus, rheumatoid arthritis, eczema and psoriasis. Autoimmune diseases cause the immune system to attack healthy, normal tissue as if it were a foreign substance. The finding that CP-690,550 selectively suppresses the immune response in transplant rejection with minimal toxicity also suggests that a Jak3 inhibitor might be useful in the treatment of autoimmune diseases.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Ray Fleming | NIH News
Further information:
http://www.nih.gov/news/pr/oct2003/niams-30.htm
http://www.niams.nih.gov.

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>