Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIAMS Researchers Collaborate to Produce Targeted Immunosuppressant Drug

31.10.2003


Investigators at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Pfizer Global Research and Development and Stanford University have collaborated in studying a new immunosuppressant drug, CP-690,550, that may avoid some of the common side effects associated with other medications that curb the immune system. The new drug, discovered by Pfizer researchers, may be of major importance for those who are treated with immunosuppressants for organ transplants or autoimmune diseases.



John O’Shea, M.D., Yong-Jie Zhou, M.D., and their team in the NIAMS Molecular Immunology and Inflammation Branch joined scientists from Pfizer and Stanford in developing and studying the drug. CP-690,550 was tested in mice with heart transplants and in monkeys with kidney transplants done by Stanford. In both cases, animals treated with CP-690,550 survived much longer than untreated animals. None of the treated animals showed signs of such immunosuppressant side effects as increased cholesterol, blood sugar, blood pressure or increased white blood cell count. The animals also showed no significant decreases in white blood cells or platelets.

The new drug, reported in the journal Science, inhibits the enzyme Jak3, a protein discovered by the NIAMS team in 1994 that is found only in immune system cells. The new study shows that inhibiting this enzyme has the effect of suppressing the immune system, while not affecting other systems of the body. Current immunosuppressant drugs target enzymes found in cells throughout the body, resulting in the toxic side effects. The Jak3 inhibitor has the advantage of selectively targeting a protein that only has effects on immune cells.


The finding culminates a long process of research and discovery by the NIAMS team. After discovering Jak3, the team demonstrated that this protein, called a kinase, was critical for the cell signaling process resulting in the development of infection-fighting white blood cells. They went on to show that the mutation of the gene encoding Jak3 was responsible for a form of severe combined immunodeficiency (SCID). Because Jak3 is essential for immune cell function, and because its expression is limited to blood cells, the team proposed that inhibiting Jak3 might be the basis for a new class of immunosuppressant drugs. The group then entered into a collaborative research and development agreement with Pfizer — a partnership that has enabled Pfizer to develop this new drug.

CP-690,550 is the first Jak3 inhibitor to show positive results in primates. Further animal studies are being conducted to determine if this drug could be used successfully and safely in humans.

Immunosuppressant drugs, which inhibit the body’s immune response, are given to prevent the body from rejecting transplanted organs, and are also used to treat autoimmune diseases such as lupus, rheumatoid arthritis, eczema and psoriasis. Autoimmune diseases cause the immune system to attack healthy, normal tissue as if it were a foreign substance. The finding that CP-690,550 selectively suppresses the immune response in transplant rejection with minimal toxicity also suggests that a Jak3 inhibitor might be useful in the treatment of autoimmune diseases.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), a part of the Department of Health and Human Services’ National Institutes of Health, is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, call the information clearinghouse at (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Ray Fleming | NIH News
Further information:
http://www.nih.gov/news/pr/oct2003/niams-30.htm
http://www.niams.nih.gov.

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>