Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment to beat severe incontinence

28.10.2003


Scientists have developed a potential treatment for severe incontinence that means the millions of sufferers worldwide could one day throw away their incontinence pads.



University of Melbourne scientists, who developed the technique, have now licensed the intellectual property to Continence Control Systems International P/L (CCS), an Australian company created to commercialise the technology that will address a worldwide potential market of more than A$1 billion per year.

Urinary incontinence is the involuntary loss of urine from the bladder. The research team from three University departments (Anatomy, Zoology and Surgery) has found a way of creating a ring of muscle from the patient’s own body and transplanting it to the bladder where it acts as a replacement sphincter. One of the causes of the most common type of urinary incontinence, known as stress incontinence, is when the sphincter muscle no longer dependably keeps urine in the bladder.


The replacement sphincter is controlled by an implanted electrical stimulator that should, for the first time, give sufferers of severe stress incontinence, a reliable method of passing urine only when they want. Under terms of an exclusive supply agreement with CCS, the necessary implanted technology will be provided by Cochlear Limited.

"The only surgical solutions available until now have involved prosthetic devices that have had problems with leakage, failure and adverse tissue reactions," says University of Melbourne’s Professor John Furness and one of the inventors of the treatment.

"This treatment has the potential to revolutionise the management of severe urinary incontinence which afflicts tens of thousands of people worldwide. This is a miserable condition, and if not effectively managed, can result in people entering nursing homes or institutions because they are unable to cope," he says.

"The most common cause of a defective sphincter muscle is trauma to the area, for example as a complication of prostate surgery in men, or more frequently in women as they reach menopause, particularly if they have had children," says Furness.

CCS will seek to raise up to $A8M in equity funds to complete the development work leading to clinical trials in 2005, which if successful, will result in a commercial product available for sale within five years.

"The number of people suffering from this condition means there is a large potential market. This research breakthrough by the University and access to Cochlear’s technology creates a partnership of two of Australia’s greatest innovators, which will accelerate the development program," says CEO of CCS, Mr Tony Stephens.

The capital raising is being conducted by Nextec BioSciences, a Melbourne based Investment Banking Company specialising in the Biotechnology sector.

Jason Major | University of Melbourne
Further information:
http://uninews.unimelb.edu.au/articleid_1016.html

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>