Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New treatment to beat severe incontinence

28.10.2003


Scientists have developed a potential treatment for severe incontinence that means the millions of sufferers worldwide could one day throw away their incontinence pads.



University of Melbourne scientists, who developed the technique, have now licensed the intellectual property to Continence Control Systems International P/L (CCS), an Australian company created to commercialise the technology that will address a worldwide potential market of more than A$1 billion per year.

Urinary incontinence is the involuntary loss of urine from the bladder. The research team from three University departments (Anatomy, Zoology and Surgery) has found a way of creating a ring of muscle from the patient’s own body and transplanting it to the bladder where it acts as a replacement sphincter. One of the causes of the most common type of urinary incontinence, known as stress incontinence, is when the sphincter muscle no longer dependably keeps urine in the bladder.


The replacement sphincter is controlled by an implanted electrical stimulator that should, for the first time, give sufferers of severe stress incontinence, a reliable method of passing urine only when they want. Under terms of an exclusive supply agreement with CCS, the necessary implanted technology will be provided by Cochlear Limited.

"The only surgical solutions available until now have involved prosthetic devices that have had problems with leakage, failure and adverse tissue reactions," says University of Melbourne’s Professor John Furness and one of the inventors of the treatment.

"This treatment has the potential to revolutionise the management of severe urinary incontinence which afflicts tens of thousands of people worldwide. This is a miserable condition, and if not effectively managed, can result in people entering nursing homes or institutions because they are unable to cope," he says.

"The most common cause of a defective sphincter muscle is trauma to the area, for example as a complication of prostate surgery in men, or more frequently in women as they reach menopause, particularly if they have had children," says Furness.

CCS will seek to raise up to $A8M in equity funds to complete the development work leading to clinical trials in 2005, which if successful, will result in a commercial product available for sale within five years.

"The number of people suffering from this condition means there is a large potential market. This research breakthrough by the University and access to Cochlear’s technology creates a partnership of two of Australia’s greatest innovators, which will accelerate the development program," says CEO of CCS, Mr Tony Stephens.

The capital raising is being conducted by Nextec BioSciences, a Melbourne based Investment Banking Company specialising in the Biotechnology sector.

Jason Major | University of Melbourne
Further information:
http://uninews.unimelb.edu.au/articleid_1016.html

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>