Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine a Contributing Genetic Factor of Photosensitivity in Lupus Patients

28.10.2003


Discovery opens doors to treating symptom that can cause the body to attack itself

Researchers at the University of Pennsylvania School of Medicine have identified a variant of the human gene for tumor necrosis factor-alpha (TNF-alpha) as the cause for photosensitivity in lupus patients. This discovery, which was presented today at the annual scientific meeting of the American College of Rheumatology, will not only help in treating photosensitivity, but will also advance research on treating this potentially damaging symptom and possibly point to one of the genetic causes of lupus.

Victoria Werth, MD Associate Professor of Dermatology and Medicine in Penn’s School of Medicine, working in collaboration with Kathleen E. Sullivan, MD, PhD, Associate Professor of Pediatrics, University of Pennsylvania School of Medicine, and attending physician in The Children’s Hospital of Philadelphia Division of Allergy and Immunology, identified a variant of the TNF-alpha promoter that showed increased activity when exposed to sunlight. This discovery is crucial to understanding photosensitivity and lupus because TNF-alpha has been shown to stimulate apoptosis, the process of cellular death. As skin cells die, intracellular proteins move to the cell’s surfaces where they stimulate an immune reaction. The immune system makes new antibodies against these proteins and triggers further inflammation, causing the body to attack its own internal organs - just from sunlight.



As part of her research, Werth has studied the effects of TNF-alpha in cultured cells and patients. She has found that a large percentage of patients with subacute cutaneous lupus erythematosus (SCLE), a highly photosensitive form of lupus, has one or even two copies of the TNF-alpha variant gene. Thus, when these cells are exposed to sunlight, the gene becomes overactive, and a large quantity of TNF-alpha is produced. This causes nearby skin cells to undergo apoptosis, therefore stimulating the immune system and triggering flares that could affect internal organs.

The increased presence of TNF-alpha in lupus patient cells suggests that additional genetic variants are associated with increased TNF-alpha production in response to sunlight. This could mean major advances in treating lupus patients.

“These results now let us think about different categories of drugs for treatment of photosensitivity,” says Werth. While drugs like antimalarials and thalidomide are already used to inhibit TNF-alpha and treat the skin manifestations of lupus, these findings allow researchers to test newer drugs that inhibit TNF-alpha. Also, as researchers better understand the wavelengths of light that trigger the disease, they can develop sunscreens that will hopefully improve the ability to block the harmful effects of sunlight.

Funding for this research was provided by the Lupus Research Institute through their Novel Research Program, which seeks to support highly promising novel approaches to discover the cause, improve the treatment and cure lupus.

Jen Miller | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/oct03/lupus.htm

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>