Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Determine a Contributing Genetic Factor of Photosensitivity in Lupus Patients

28.10.2003


Discovery opens doors to treating symptom that can cause the body to attack itself

Researchers at the University of Pennsylvania School of Medicine have identified a variant of the human gene for tumor necrosis factor-alpha (TNF-alpha) as the cause for photosensitivity in lupus patients. This discovery, which was presented today at the annual scientific meeting of the American College of Rheumatology, will not only help in treating photosensitivity, but will also advance research on treating this potentially damaging symptom and possibly point to one of the genetic causes of lupus.

Victoria Werth, MD Associate Professor of Dermatology and Medicine in Penn’s School of Medicine, working in collaboration with Kathleen E. Sullivan, MD, PhD, Associate Professor of Pediatrics, University of Pennsylvania School of Medicine, and attending physician in The Children’s Hospital of Philadelphia Division of Allergy and Immunology, identified a variant of the TNF-alpha promoter that showed increased activity when exposed to sunlight. This discovery is crucial to understanding photosensitivity and lupus because TNF-alpha has been shown to stimulate apoptosis, the process of cellular death. As skin cells die, intracellular proteins move to the cell’s surfaces where they stimulate an immune reaction. The immune system makes new antibodies against these proteins and triggers further inflammation, causing the body to attack its own internal organs - just from sunlight.



As part of her research, Werth has studied the effects of TNF-alpha in cultured cells and patients. She has found that a large percentage of patients with subacute cutaneous lupus erythematosus (SCLE), a highly photosensitive form of lupus, has one or even two copies of the TNF-alpha variant gene. Thus, when these cells are exposed to sunlight, the gene becomes overactive, and a large quantity of TNF-alpha is produced. This causes nearby skin cells to undergo apoptosis, therefore stimulating the immune system and triggering flares that could affect internal organs.

The increased presence of TNF-alpha in lupus patient cells suggests that additional genetic variants are associated with increased TNF-alpha production in response to sunlight. This could mean major advances in treating lupus patients.

“These results now let us think about different categories of drugs for treatment of photosensitivity,” says Werth. While drugs like antimalarials and thalidomide are already used to inhibit TNF-alpha and treat the skin manifestations of lupus, these findings allow researchers to test newer drugs that inhibit TNF-alpha. Also, as researchers better understand the wavelengths of light that trigger the disease, they can develop sunscreens that will hopefully improve the ability to block the harmful effects of sunlight.

Funding for this research was provided by the Lupus Research Institute through their Novel Research Program, which seeks to support highly promising novel approaches to discover the cause, improve the treatment and cure lupus.

Jen Miller | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/oct03/lupus.htm

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>