Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JAK2 enzyme helps protect brain cells, wreaks havoc on blood vessels

27.10.2003


How the same enzyme helps protect brain cells from the destruction of Alzheimer’s yet contributes to the blood vessel disease of diabetics is a puzzle Dr. Mario B. Marrero wants to solve.


Dr. Mario B. Marrero is studying an enzyme that helps protect brain cells from destruction but wreaks havoc on the blood vessels of diabetics.



"I call JAK2 the good, the bad and the ugly because its function depends on the cell type and where it acts," says the biochemist at the Medical College of Georgia who wants to eliminate – or at least control – the "bad" and "ugly."

JAK2, or janus kinase 2, is an enzyme found in all cells that plays an important role in development and growth; mice lacking this enzyme die in utero, Dr. Marrero says. After birth, the enzyme becomes a two-edged sword that activates or deactivates other proteins and plays a role in Alzheimer’s, diabetes, hypertension and kidney failure.


When JAK2 is good, it helps protect brain cells from Alzheimer’s disease by blocking the action of amyloid-b peptide, the plaque-producing protein fragment implicated in Alzheimer’s disease.

Nicotine, long known to have a neuro-protective role despite its other drawbacks, apparently uses JAK2 to enable this protection. "When brain cells are exposed to beta amyloid that makes plaque, nicotine protects them by activating JAK2, which activates a pathway of cell survival and blocks the beta activation of the pathway that leads to cell death," says Dr. Marrero, who discovered nicotine’s ability to regulate JAK2 in collaboration with Dr. Merouane Bencherif, vice president of preclinical research at the North Carolina-based pharmaceutical company, Targacept, Inc.

But if angiotensin II – a powerful vasoconstrictor involved in blood pressure regulation and a growth factor as well – is added to the mix, nicotine no longer protects brain cells. "Angiotensin II doesn’t allow JAK2 to be activated by nicotine," Dr. Marrero says.

This finding supports his theory that nicotine protects neurons through the JAK2 pathway but also points toward new treatment approaches for Alzheimer’s and other age-related dementias. One such treatment may be a drug that activates JAK2 in combination with ACE, or angiotensin converting enzyme, inhibitors which block angiotensin II production. ACE inhibitors are widely used to treat high blood pressure and anecdotal evidence indicates that people who take these drugs are less susceptible to Alzheimer’s and other dementias.

"What we are working on is trying to understand these pathways that lead to neuro-protection," says Dr. Marrero. "And how does angiotensin II block that action via JAK2? It may even be that JAK2 plays a role when angiotensin II acts as a growth factor." Dr. Marrero’s work on nicotine neuro-protection and JAK2 was published in the Nov. 22, 2002 issue of The Journal of Biological Chemistry.

His lab is also delineating the "bad" and "ugly" pathways that lead to JAK’s role in cell death and destructive proliferation. Like nicotine, its partner in neuro-protection, JAK2 is bad for blood vessels. When activated, JAK2 attacks blood vessels from the inside and out, prompting suicide of the endothelial cells that comprise the smooth interior through which blood flows and proliferation of the smooth muscle cells that comprise the exterior. The result is diseased, dysfunctional blood vessels.

JAK2 activation also is stimulated by high glucose levels in the body, a hallmark of diabetes, via the polyol pathway, a finding Dr. Marrero’s lab in collaboration with Dr. Carlos Isales, MCG endocrinologist, reported in the Aug. 15, 2003 issue of The Journal of Biological Chemistry. "That is why diabetics have a lot of blood vessel problems, in the aorta and major blood vessels," Dr. Marrero says.

In the face of high glucose, the kidneys are an easy target for JAK2’s detrimental effects, prompting glomeruli mesangial cells to grow and proliferate, thereby clogging the kidneys’ intricate filtering mechanisms, according to his work published in the December 2002 issue of Diabetes. "That is why diabetes is one of the main causes of kidney failure. If you take away high glucose, it doesn’t really happen," the researcher says.

Dr. Marrero is collaborating with Dr. David Pollock, MCG physiologist, to further explore what happens in the kidney in an animal model and with Dr. Patricia Schoenlein, an MCG cancer researcher, to explores JAK2’s apparent interference with some cancer therapies. For example, tamoxifen, an anti-estrogen that prompts breast cancer cell suicide, won’t work in cells containing insulin because insulin apparently activates JAK2, which intervenes. When the researchers add a known JAK inhibitor, AG4-90, tamoxifen works in those cells.

"We are trying to figure out how various compounds might be able to regulate JAK," says Dr. Marrero. "We know nicotine activates it, which is why we are studying it." He wants to find additional compounds that activate or inhibit JAK2 so he can maximize the protective qualities of the enzyme and eliminate its contributions to diseases such as diabetes.

Dr. Marrero recently co-authored the preface of a textbook scheduled for release later this month, "Diabetes and Cardiovascular Disease: Integrating Science and Clinical Medicine," with Dr. David M. Stern, a renowned diabetes and vascular researcher and dean of the MCG School of Medicine. The book is being published by Lippincott Williams & Wilkins, an international publisher of professional health information for physicians, nurses and students headquartered in Philadelphia.


###
Dr. Marrero’s research is funded by the National Institutes of Health, an American Heart Association Established Investigator Award grant and Targacept, Inc.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>