Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTEN and prostate cancer--the devil is in the doses

27.10.2003


Cancer is a complex disease where multiple genetic and environmental factors contribute to risk. Its onset and progression depends on the combination of a series of genetic disruptions rather than on a single event. At a genetic level, it is not just presence or absence of a gene (or a mutated version of the gene) that causes disease, but as Pier Paolo Pandolfi and colleagues report, protein "dose"--that is, the level of remaining activity--also influences cancer progression.



Focusing on the tumor suppressor gene PTEN, the researchers created a mouse model system to study tumor progression in prostate cancer. PTEN is among the most commonly mutated tumor suppressor genes in human cancer. And like many other tumor suppressors, PTEN targets proteins in signaling pathways that regulate cell growth and apoptosis in healthy tissue and contributes to cancer when dysfunctional. Humans, as diploid organisms, generally have two versions of most genes, including PTEN. In the event that one copy is damaged or lost, gene function is usually maintained by the other copy. In the classic definition of a tumor suppressor, both copies must be lost for a tumor to occur. Yet in many cases of advanced cancer, including prostate cancer, only one copy is lost at the time a patient shows symptoms. It is then not unreasonable to hypothesize that the degree of remaining PTEN activity controls the course of the disease: loss of one copy could influence tumor initiation, while further slight reductions might be sufficient to facilitate the invasion and metastatic behavior of late-stage cancers.

Pandolfi and colleagues chose two strategies to investigate this hypothesis. In the first approach, they genetically engineered one series of mice with minimal levels of murine PTEN protein (complete loss results in embryo death). This novel 25%–35% active PTEN "hypomorphic" strain of mice, which appears to retain the minimum level of PTEN needed to survive embryonic development, adds to existing strains of fully normal and 50% active PTEN mice. In order to model the full loss of PTEN protein, the researchers generated another series of mice in which PTEN genes were selectively disabled in the prostate only. The researchers found that subtle reductions in PTEN dose did indeed produce progressive changes in the biology of the tumor, while mice having no functional PTEN genes showed the most invasive and aggressive cancers. These results, the researchers say, show that PTEN plays a "crucial dose-dependent role in prostate cancer tumor suppression" and that progressive reduction of gene function induces progressive changes in the quantity and quality of molecular and pathological effects on the pathway to full-blown cancer.


By coupling the molecular genetics and dose of PTEN protein with the physiological progression of cancer in the prostate, these new mouse models may not only shed light on cancer progression in humans, but also help bolster diagnostic, prognostic, and therapeutic techniques. While evaluation of tumor status has traditionally been determined by pathological analysis of tissue samples, these new models allow scientists to pair anatomical stages with underlying molecular events--such as the expression level of a single gene or protein--to allow more accurate assessments. These molecular profiles can also help researchers design targeted, more efficient prostate cancer treatments. For example, if prostate tissue is hypersensitive to PTEN in humans--which the results suggest may be the case, since male mice with only 30% of normal PTEN levels show massive and selective enlargement of the prostate, and even invasive tumors--then ongoing monitoring of PTEN levels could help tailor therapies based on promoting PTEN expression. For patients with complete loss of PTEN function, where this would not be an option, inhibiting the proteins made overactive through PTEN loss could prove effective. And these approaches could well hold true for other cancers involving PTEN, including endometrial, brain, and breast cancer.


###
Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, et al. (2003) PTEN dose dictates cancer progression in the prostate. DOI: 10.1371/journal.pbio.0000059

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere -- to read, download, redistribute, include in databases, and otherwise use -- subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

This article, which appears in PDF form online on October 27, 2003, is presented as a pre-issue publication. The article will appear both as HTML (along with the PDF) and in print in our December 22, 2003 issue.

CONTACT:
Dr. Pier Paolo Pandolfi
Molecular Biology Program and Department of Pathology
Memorial Sloan-Kettering Cancer Center
1275 York Avenue, Box 110
New York, NY 10021
United States of America
212-639-6168
212-717-3102 (fax)
p-pandolfi@ski.mskcc.org

Barbara Cohen | PLoS
Further information:
http://www.plos.org/downloads/plbi-01-03-pandolfi.pdf

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>