Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTEN and prostate cancer--the devil is in the doses

27.10.2003


Cancer is a complex disease where multiple genetic and environmental factors contribute to risk. Its onset and progression depends on the combination of a series of genetic disruptions rather than on a single event. At a genetic level, it is not just presence or absence of a gene (or a mutated version of the gene) that causes disease, but as Pier Paolo Pandolfi and colleagues report, protein "dose"--that is, the level of remaining activity--also influences cancer progression.



Focusing on the tumor suppressor gene PTEN, the researchers created a mouse model system to study tumor progression in prostate cancer. PTEN is among the most commonly mutated tumor suppressor genes in human cancer. And like many other tumor suppressors, PTEN targets proteins in signaling pathways that regulate cell growth and apoptosis in healthy tissue and contributes to cancer when dysfunctional. Humans, as diploid organisms, generally have two versions of most genes, including PTEN. In the event that one copy is damaged or lost, gene function is usually maintained by the other copy. In the classic definition of a tumor suppressor, both copies must be lost for a tumor to occur. Yet in many cases of advanced cancer, including prostate cancer, only one copy is lost at the time a patient shows symptoms. It is then not unreasonable to hypothesize that the degree of remaining PTEN activity controls the course of the disease: loss of one copy could influence tumor initiation, while further slight reductions might be sufficient to facilitate the invasion and metastatic behavior of late-stage cancers.

Pandolfi and colleagues chose two strategies to investigate this hypothesis. In the first approach, they genetically engineered one series of mice with minimal levels of murine PTEN protein (complete loss results in embryo death). This novel 25%–35% active PTEN "hypomorphic" strain of mice, which appears to retain the minimum level of PTEN needed to survive embryonic development, adds to existing strains of fully normal and 50% active PTEN mice. In order to model the full loss of PTEN protein, the researchers generated another series of mice in which PTEN genes were selectively disabled in the prostate only. The researchers found that subtle reductions in PTEN dose did indeed produce progressive changes in the biology of the tumor, while mice having no functional PTEN genes showed the most invasive and aggressive cancers. These results, the researchers say, show that PTEN plays a "crucial dose-dependent role in prostate cancer tumor suppression" and that progressive reduction of gene function induces progressive changes in the quantity and quality of molecular and pathological effects on the pathway to full-blown cancer.


By coupling the molecular genetics and dose of PTEN protein with the physiological progression of cancer in the prostate, these new mouse models may not only shed light on cancer progression in humans, but also help bolster diagnostic, prognostic, and therapeutic techniques. While evaluation of tumor status has traditionally been determined by pathological analysis of tissue samples, these new models allow scientists to pair anatomical stages with underlying molecular events--such as the expression level of a single gene or protein--to allow more accurate assessments. These molecular profiles can also help researchers design targeted, more efficient prostate cancer treatments. For example, if prostate tissue is hypersensitive to PTEN in humans--which the results suggest may be the case, since male mice with only 30% of normal PTEN levels show massive and selective enlargement of the prostate, and even invasive tumors--then ongoing monitoring of PTEN levels could help tailor therapies based on promoting PTEN expression. For patients with complete loss of PTEN function, where this would not be an option, inhibiting the proteins made overactive through PTEN loss could prove effective. And these approaches could well hold true for other cancers involving PTEN, including endometrial, brain, and breast cancer.


###
Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, et al. (2003) PTEN dose dictates cancer progression in the prostate. DOI: 10.1371/journal.pbio.0000059

All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere -- to read, download, redistribute, include in databases, and otherwise use -- subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

This article, which appears in PDF form online on October 27, 2003, is presented as a pre-issue publication. The article will appear both as HTML (along with the PDF) and in print in our December 22, 2003 issue.

CONTACT:
Dr. Pier Paolo Pandolfi
Molecular Biology Program and Department of Pathology
Memorial Sloan-Kettering Cancer Center
1275 York Avenue, Box 110
New York, NY 10021
United States of America
212-639-6168
212-717-3102 (fax)
p-pandolfi@ski.mskcc.org

Barbara Cohen | PLoS
Further information:
http://www.plos.org/downloads/plbi-01-03-pandolfi.pdf

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>