Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental hantavirus vaccine elicits strong antibody response in primates

24.10.2003


For the first time, scientists have demonstrated that an experimental vaccine to hantavirus pulmonary syndrome (HPS), a highly lethal disease, elicits a strong neutralizing antibody response in laboratory animals - a response that is key to preventing the virus from causing infection.

In addition, the antibodies, produced in nonhuman primates that received the vaccine, protected hamsters from disease even when administered 5 days after exposure.

These findings provide proof of concept in nonhuman primates for a vaccine against HPS, as well as for post exposure prophylactic treatment of HPS and a related disease known as hemorrhagic fever with renal syndrome (HFRS).



In an article published in last month’s Journal of Virology, investigators at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) describe using a naked DNA approach to develop a hantavirus vaccine. The technique involves vaccination with plasmid DNA that encodes a specific hantavirus gene. When the plasmid DNA is introduced into the cells of a vaccine recipient, using a harmless device called a "gene gun," the cloned gene is expressed and presented to the immune system.

According to senior author Jay W. Hooper, Ph.D., the USAMRIID team constructed an expression plasmid containing the full-length M genome segment of Andes virus, a South American hantavirus. Vaccination with the plasmid elicited a potent neutralizing antibody response in rhesus macaques that were vaccinated a total of four times at three-week intervals.

To look at the duration of that response, the team collected serum samples for about six months. The monkeys who received the Andes vaccine displayed robust antibody levels as long as 25 weeks after the last vaccination.

Hantaviruses are carried by rodents and have caused epidemics in Europe, Asia, and the Americas. Some cause HPS, while others are responsible for the more common HFRS. The viruses are pathogens of known military importance in endemic areas.

Currently there are no vaccines or antiviral drugs to protect against or treat HPS. The disease affects previously healthy individuals in all age groups, disease progression is rapid, and the case fatality rate is one of the highest for any acute viral disease known. In addition, there have been reports of person-to-person transmission of Andes virus in southern Argentina and Chile.

Having successfully vaccinated rhesus macaques with a hantavirus vaccine candidate, the USAMRIID scientists next asked whether the neutralizing antibody response elicited by the vaccine could protect hamsters from lethal hantavirus infection. The team had already developed a lethal-disease model of Andes virus in Syrian hamsters. To further explore this question, they tested serum from a monkey that had received the Andes vaccine for protective efficacy when administered to hamsters following challenge with the virus.

In these post-challenge experiments, 15 of 16 animals that received the antibody on day 3, 4, or 5 after challenge survived. The level of protection dropped significantly when the antibody was administered on day 6 or later. While all but one of the post-challenge survivors were infected with Andes virus, no deaths were observed.

"Aside from the immunogenicity of the vaccine in nonhuman primates, the most exciting thing about this was the indication that post-exposure prophylaxis might work--even five days out from exposure," Hooper commented. "When we administered antibody after challenge, we got nearly complete protection."

While the immediate need is for a vaccine against HFRS, the USAMRIID team believes the DNA vaccine approach could one day be used to develop a multivalent vaccine for hantaviruses that would be broadly protective against HPS and other forms of the disease.

"This work is an example of the many medical products that USAMRIID offers the Nation and the Department of Defense," said Colonel Erik A. Henchal, Ph.D., commander of the Institute. "This success is the product of years of dedicated basic and applied research by USAMRIID scientists."

Hooper’s co-authors were David M. Custer, Elizabeth G. Thompson, and Connie S. Schmaljohn, Ph.D., of USAMRIID, and Thomas G. Ksiazek, D.V.M., Ph.D., of the Centers for Disease Control and Prevention.

Caree Vander Linden | EurekAlert!
Further information:
http://www.usamriid.army.mil

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>