Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the body’s ’homeland security’ against TB

24.10.2003


Immune system provides new clue to most life-threatening bacterium
The microbe that causes tuberculosis operates the way a human terrorist would. With minimal resources, the TB bacterium skillfully blends in and gains strength before lashing out unexpectedly. This microbe, which claims more human lives each year than any other bacterial pathogen, even uses its host’s defenses, hiding out in an immune cell called a macrophage.

Now, Rockefeller scientist John MacMicking, Ph.D., has discovered a unique way the immune system can disarm the bacterial offender. If this defense could be strengthened, TB could be brought to biological justice.


Reporting in the October 24 issue of the journal Science, Rockefeller researchers MacMicking and John McKinney, Ph.D., with their colleague from Duke University, Greg Taylor, Ph.D., have identified a new pathway stimulated by the soluble host protein called interferon-gamma that impairs TB’s ability to reproduce itself in mice. Interferon-gamma primarily instructs immune cells to perform different tasks by helping turn on or off certain genes. In the case of interferon-gamma, literally hundreds of genes are induced once its signal is transmitted to the nucleus of the activated cell. Of these, only a few will be responsible for controlling the replication of the TB bacterium. Finding those genes involved in antimicrobial activity against TB is the key.

"We’re looking for immune pathways which could render the TB bacillus vulnerable," says MacMicking, a research associate in the Laboratory of Infection Biology and lead author of the Science paper. "By learning more about how the immune system successfully operates during infection, we may soon be able to manipulate the host-pathogen relationship in a way which favors us, a somewhat reluctant host."

MacMicking and colleagues discovered the pathway, called LRG-47, based on clues from another TB-inhibiting pathway called NOS2 and analysis of mouse genes turned on during TB infection. MacMicking is already homing in on the human version of LRG-47. While cellular studies suggest that LRG-47 is involved in altering the bacterium’s intracellular compartment to directly prevent its growth, the precise mechanistic details remain to be worked out. However, the most powerful evidence comes from mice that no longer possess LRG-47 after removal via genetic engineering techniques; these mice become profoundly susceptible to TB infection. The researchers’ findings represent the growing trend in seeking new insights into fighting infections by studying the immune system’s signature response to specific pathogens. Information about each new pathway that is discovered could be translated into new drugs that help boost immune responses to infection.

TB, a hardy bacteria that makes its home during infection by creating its own niche inside macrophages, currently infects one third of the world’s population. Macrophages, which are cells that have specifically evolved to dispose of pathogens by engulfing and chemically destroying them, are the major front-line defense our bodies possess in trying to prevent TB from taking up residence. These cells produce the chemicals -- not unlike bleach or other household disinfectants -- which kill TB once they have received instructions from interferon-gamma to do so.

Even with interferon-gamma, however, our body doesn’t always succeed in eliminating the bacterium. But interferon-gamma stops TB from replicating, or reproducing itself, inside macrophages. Under these conditions, TB slows in growth until it is latent, or under house arrest, within the body.

"One of the reasons we study the immune response to TB," says McKinney, head of the Laboratory of Infection Biology, "is to identify better treatments than those currently in use. This will occur only as a result of scientists’ devoting more analysis to the bacteria’s weaknesses and the host’s strengths. That means studying the immune response alongside the bacteria."

Rockefeller University President Paul Nurse, Ph.D., says: "Not only have MacMicking and McKinney revealed an enticing clue that may lead to much-needed new TB treatments, they’ve carried on their research in the Rockefeller tradition. Their findings continue several aspects of earlier work conducted by Rockefeller scientists, notably James Darnell’s seminal descriptions of the interferon and Jak-STAT pathways, Zanvil Cohn’s pioneering experiments on macrophage immunobiology and Christian de Duve’s Nobel Prize-winning research on the lysosome. Others, such as current faculty members Ralph Steinman and Charles Rice, are similarly interested in finding new ways to employ the immune system in the fight against viral infection and cancer."

TB largely leads an existence based on stealth. In 90 percent of those infected, it is not life-threatening because the bacteria are under biological house arrest by the immune system. People with latent TB infections do not feel sick, have no symptoms and cannot spread TB to others. While this picture of the vast majority of those harboring the disease seems reassuring, it is misleading. The pathogen can switch from a latent state in any human host if that host’s immune system is weakened.

Normal human aging alone gives TB the possibility of reactivating, disabling and killing any of the two billion people worldwide who are latently infected. When the bug moves out of its latent stage, the person infected is not only at a high mortality risk, but can infect others with TB. An estimated 10 to 15 million people in the U.S. have latent TB.

Treatment for latent infections includes at least three potent antibiotics, but they must be taken alone or in combination, for six to nine months, and often produce toxic side effects. Even in the best health care facilities, patients with TB often balk at the lengthy and often wearying regime. In developing countries with numerous public health challenges, the long treatment and side effects of this treatment are prohibitive. As a result, TB, like staph and other bacterial infections, is becoming more threatening because of growing worldwide multi-drug resistance.

"Tuberculosis is an intractable threat to human health," says McKinney. "We will never break the chain of infection of tuberculosis the way we did with smallpox, for example. It’s a different kind of bug." For this reason, McKinney and his colleagues chip away at the sophisticated parrying between the microbe and the human host. Their latest finding puts another brick in the wall between chronic infection with TB and possible immune system-based cures.

"This discovery is exciting because it provides a much sought-after link between immune cell activation and TB inhibition," says MacMicking. "Previously we’d examined another pathway based on NOS2 but this was not the whole story. LRG-47 opens up a new way of thinking about the problem. It’s the first step in a biologic process which one day could be mimicked chemically and therapeutically through the use of small molecules."

In 2000, McKinney and his colleagues identified one of the first targets for the immune system arsenal -- a bacterial enzyme called isocitrate lyase (ICL) -- which allows TB to use fatty acids, instead of sugars, for energy. The enzyme helps keep the latent, or non-dividing microbe, alive. Drug maker GlaxoSmithKline is currently completing a high-throughput screen for ICL inhibitors. An anti-ICL drug could cut off the latent bacteria’s source of energy where the microbe is holed up inside the body.

Given that TB is so difficult to treat with the current crop of antibiotics, drugs that target processes involved during bacterial dormancy or which enhance immune responses against both replicating and non-dividing bacteria may be the best new source of intelligence in the fight against the disease.

Lynn Love | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>