Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMHS researchers find clues to growing new jawbones in cancer patients after radiation therapy

23.10.2003


Poor bone quality in rats suggests new therapies to improve human treatment



In limited attempts with individual patients, varying surgeons have found mixed success in a method of growing new human jawbones after radiation therapy to treat head and neck cancer. While some patients have seemed to respond well to the technique, called distraction osteogenesis, others have not.

Researchers at the University of Michigan Health System are looking at how and why distraction osteogenesis works by studying rats and have found clues to the uneven clinical results. They will present their findings Wednesday at the American College of Surgeons Clinical Congress in Chicago.


Distraction osteogenesis is a method of regrowing bone in which the fractured bone is pulled apart millimeters at a time. As the fracture begins to heal, surgeons tug the bone further apart, tricking the body into thinking it must still work to heal the fracture. The body then begins to grow new bone to fill in the gap.

In two studies, UMHS researchers looked at distraction osteogenesis for reconstruction of the jawbone after radiation therapy. In one, the rats were given a low dose radiation; in the second study, the rats got a high dose of radiation. In both studies, new bone was formed. But looking at the new bone under a microscope revealed that it was of poor quality. There were obvious holes within the tissue and the bone was thin and brittle, showing signs of osteopenia (a precursor to osteoporosis). The high-dose radiation resulted in even lower quality bone.

"Clinical researchers are significantly limited in their ability to analyze their success and failure at the level of the bone. It would be difficult and invasive to take specimens from an actual patient’s bone after reconstruction and study the quality and strength. With our rat model, we can cut out the new bone and examine it. We can show that although you can distract, there are some problems with the bone after radiation, and we can determine what those problems are," says lead researcher Steven Buchman, M.D., associate professor of Plastic Surgery at the University of Michigan Medical School.

In humans, researchers would have difficulty making a comprehensive determination of the quality of the bone and the conditions that might improve it. So while it may appear under X-ray or clinical exam to be of normal quality, the overwhelming likelihood is that it is not.

The new research results indicate that the therapy needs to be significantly improved. Buchman says the poor bone quality could account for the uneven results in previous anecdotal clinical cases using distraction osteogenesis in irradiated cancer patients.

"The real significance is we’ve shown the new bone is far from perfect, and now we can look at therapeutic interventions to improve the process of creating new bone after radiation therapy. We have a very reasonable way to study it and determine if we can improve outcomes," Buchman says.

Distraction osteogenesis has been used since the early 1900s to grow and heal larger bones in the lower body. In 1995, surgeons began to use it for facial reconstruction, looking at growing new jaws for children born with small jaws or without jaws. Buchman, director of UMHS’s Craniofacial Anomalies Program, has had success using distraction osteogenesis on children and adults with jaw deformities.

Surgeons next began to wonder about its applications after cancer. Radiation often destroys or compromises the soft tissue in the head and neck. That makes bone grafts difficult after radiation therapy because the bone graft needs a new blood supply, which the irradiated tissue can’t supply. Free tissue transfers, in which tissue is taken from the leg or arm and reattached to the affected area, have been effective. But it’s a lengthy operation that leaves a scar in the leg or arm as well. Distraction osteogenesis has the potential to be an optimal solution.

"Now, knowing that distraction osteogenesis can produce new bone after radiation, we can test techniques and therapeutic interventions to help improve the bone quality. By studying this in the rat model, we can make sure the quality is there before transferring the technique to humans," Buchman says.


Funding for the research came from the National Institutes of Health, the Carls Foundation and the Plastic Surgery Education Foundation.

Nicole Fawcett | UMHS
Further information:
http://www.med.umich.edu/opm/newspage/reporter.htm
http://www.med.umich.edu/opm/newspage/2003/jawbone.htm

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>