Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMHS researchers find clues to growing new jawbones in cancer patients after radiation therapy

23.10.2003


Poor bone quality in rats suggests new therapies to improve human treatment



In limited attempts with individual patients, varying surgeons have found mixed success in a method of growing new human jawbones after radiation therapy to treat head and neck cancer. While some patients have seemed to respond well to the technique, called distraction osteogenesis, others have not.

Researchers at the University of Michigan Health System are looking at how and why distraction osteogenesis works by studying rats and have found clues to the uneven clinical results. They will present their findings Wednesday at the American College of Surgeons Clinical Congress in Chicago.


Distraction osteogenesis is a method of regrowing bone in which the fractured bone is pulled apart millimeters at a time. As the fracture begins to heal, surgeons tug the bone further apart, tricking the body into thinking it must still work to heal the fracture. The body then begins to grow new bone to fill in the gap.

In two studies, UMHS researchers looked at distraction osteogenesis for reconstruction of the jawbone after radiation therapy. In one, the rats were given a low dose radiation; in the second study, the rats got a high dose of radiation. In both studies, new bone was formed. But looking at the new bone under a microscope revealed that it was of poor quality. There were obvious holes within the tissue and the bone was thin and brittle, showing signs of osteopenia (a precursor to osteoporosis). The high-dose radiation resulted in even lower quality bone.

"Clinical researchers are significantly limited in their ability to analyze their success and failure at the level of the bone. It would be difficult and invasive to take specimens from an actual patient’s bone after reconstruction and study the quality and strength. With our rat model, we can cut out the new bone and examine it. We can show that although you can distract, there are some problems with the bone after radiation, and we can determine what those problems are," says lead researcher Steven Buchman, M.D., associate professor of Plastic Surgery at the University of Michigan Medical School.

In humans, researchers would have difficulty making a comprehensive determination of the quality of the bone and the conditions that might improve it. So while it may appear under X-ray or clinical exam to be of normal quality, the overwhelming likelihood is that it is not.

The new research results indicate that the therapy needs to be significantly improved. Buchman says the poor bone quality could account for the uneven results in previous anecdotal clinical cases using distraction osteogenesis in irradiated cancer patients.

"The real significance is we’ve shown the new bone is far from perfect, and now we can look at therapeutic interventions to improve the process of creating new bone after radiation therapy. We have a very reasonable way to study it and determine if we can improve outcomes," Buchman says.

Distraction osteogenesis has been used since the early 1900s to grow and heal larger bones in the lower body. In 1995, surgeons began to use it for facial reconstruction, looking at growing new jaws for children born with small jaws or without jaws. Buchman, director of UMHS’s Craniofacial Anomalies Program, has had success using distraction osteogenesis on children and adults with jaw deformities.

Surgeons next began to wonder about its applications after cancer. Radiation often destroys or compromises the soft tissue in the head and neck. That makes bone grafts difficult after radiation therapy because the bone graft needs a new blood supply, which the irradiated tissue can’t supply. Free tissue transfers, in which tissue is taken from the leg or arm and reattached to the affected area, have been effective. But it’s a lengthy operation that leaves a scar in the leg or arm as well. Distraction osteogenesis has the potential to be an optimal solution.

"Now, knowing that distraction osteogenesis can produce new bone after radiation, we can test techniques and therapeutic interventions to help improve the bone quality. By studying this in the rat model, we can make sure the quality is there before transferring the technique to humans," Buchman says.


Funding for the research came from the National Institutes of Health, the Carls Foundation and the Plastic Surgery Education Foundation.

Nicole Fawcett | UMHS
Further information:
http://www.med.umich.edu/opm/newspage/reporter.htm
http://www.med.umich.edu/opm/newspage/2003/jawbone.htm

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>