Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case Western Reserve University scientists test protein as early cancer detection agent

23.10.2003


Scientists at Case Western Reserve University have identified an agent that could lead to the early detection of many cancers.



The Case research team discovered that the human body increases production of the protein clusterin as a signal of cell distress and provides a reliable gauge of the general health of a cell. The findings were reported in a recent issue of the scientific journal Cancer Biology and Therapy.

"Understanding the processes that create this protein after radiation therapy or other treatments for cancer is important in our quest to develop new therapy regimens that improve the chances of recovery," said David Boothman, professor of radiation oncology and pharmacology and associate director of basic research at Case and University Hospitals of Cleveland.


According to the study, clusterin should behave in blood as it does in cells examined in the laboratory. The team observed clusterin levels rise in response to the presence of cancer. Researchers said this rise would indicate that if a baseline clusterin level was established for a healthy person, a simple blood test could detect any deviation in clusterin levels, indicating the potential presence of cancer. Case researchers will continue studies to confirm the findings and gain additional information.

The researchers used cells from humans and mice to establish their findings. "Trying to understand how genes influence cancer requires either a guess or mice, because we can’t expose humans to the radiation that helped us get to these findings. Humans and mice share many genes, so it was much easier to use strains of genetically identical mice," Boothman said.

Case scientists test protein as early cancer detection.... add one

To monitor clusterin expression in human and rodent cells, the researchers made a gene cassette in which they fused the clusterin gene to luciferase, the enzyme that provides the light in fireflies. They implanted the bound gene cassette into cancerous breast cells and then implanted the cancerous cells or tissue into mice, which they irradiated. They then observed the behavior of the genetic material to learn more about clusterin expression.

Boothman’s team is also working to develop a simple blood test that would identify clusterin levels, and to test its ability to identify cancer in mouse models.


Boothman worked with co-investigators David Wilson, professor of biomedical engineering; Helen Evans, professor of radiation oncology; Andrew Rollins, assistant professor of biomedical engineering; Lindsey Mayo, assistant professor of radiation oncology; Dmitry Klokov, Konstantin Leskov, and Shinako Araki, post-doctoral research associates; and Tracy Criswell, a graduate student in pathology at the Case School of Medicine.

About Case Western Reserve University
Case is among the nation’s leading research institutions. Founded in 1826 and shaped by the unique merger of the Case Institute of Technology and Western Reserve University, Case is distinguished by its strengths in education, research, and service. Located in Cleveland, Case offers nationally recognized programs in the Arts and Sciences, Dentistry, Engineering, Law, Management, Medicine, Nursing, and Social Sciences.

Marci Hersh | EurekAlert!
Further information:
http://www.case.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>