Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecular culprit for type II diabetes, Alzheimer’s and Parkinson’s

22.10.2003


Therapies for Alzheimer’s, Parkinson’s and type II diabetes should be directed toward a new molecular culprit — the precursor to the clumps of abnormal proteins that have garnered attention for the last century.



Israeli scientists say they have solid evidence that the precursor molecules — called protofibrils — are the problem molecules in type II diabetes, and their results support a similar mechanism for Alzheimer’s and Parkinson’s. Further, they say that the current focus on breaking up the abnormal clumps of protein — called fibrils — may in fact be doing more harm than good.

The report appeared in the Sept. 23 edition of Biochemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.


Proteins are the chemical workhorses of the body. These long chains of amino acids fold into myriad forms, but they must assume the right three-dimensional structure to function properly. Misfolded proteins are the basis of a number of seemingly unconnected diseases, including age-related diseases like type II diabetes, Alzheimer’s and Parkinson’s, as well as "mad cow" (BSE) and other prion diseases.

Despite many years of investigation, the actual mechanism of misfolding has eluded researchers, leaving them without the understanding necessary to develop effective treatments or even properly diagnose the diseases.

The most popular theory has revolved around long clumps of misfolded proteins known as amyloid fibrils that kill cells in patients. Therapeutic efforts have focused on breaking up these deposits. In Alzheimer’s they are called amyloid plaques; in Parkinson’s they are called Lewy bodies; in type II diabetes they are called islet amyloid deposits and occur in the "islets of Langerhans," the area of the pancreas where insulin is produced and regulated.

"Type II diabetes is one of the most common amyloid-related diseases," says Ehud Gazit, Ph.D., a researcher at Tel Aviv University in Israel and lead author of the study. "The Centers for Disease Control and Prevention in Atlanta estimate that more than 18 percent of American adults older than age 65 have diabetes, almost entirely of type II." As the life expectancy of people around the world continues to increase, this and other age-related diseases will become an even greater public health concern, he says.

Scientists have previously suggested that mature fibrils of the amyloid polypeptide protein — the key component of the islet deposits — are toxic to cells in the pancreas that produce insulin, attacking through tiny holes in the cell membrane. Gazit and his colleagues, graduate student Yair Porat and Sofiya Kolusheva and Raz Jelinek from Ben Gurion University, studied the interactions between the protein and cell membrane. They discovered that smaller structures formed prior to the mature fibrils, called protofibrils, are more likely to get through the membrane, and may therefore be the more toxic species.

In the past few years, other scientists have noticed the effects of protofibrils while studying Alzheimer’s and Parkinson’s, but the notion that they may be the main culprits is fairly new. Earlier this summer in another Biochemistry paper, Peter Lansbury of Harvard University suggested a possible therapeutic strategy for Parkinson’s based on stopping the formation of protofibrils.

"A very interesting point is the striking similarity between these assemblies and the structures observed in the cases of Alzehimer’s disease and Parkinson’s disease," Gazit says. The new study offers solid experimental evidence of the phenomenon in type II diabetes, and demonstrates a common thread among the three diseases.

The majority of research continues to focus on mature fibrils, but this could prove to be dangerous if the new protofibril mechanism is correct, according to Gazit. Breaking up the large amyloid deposits may actually increase the number of protofibrils, thus increasing the level of toxicity to the body.

Gazit’s new research on protofibrils is still in the early stages, but it suggests the need for a shift in focus from breaking up mature fibril deposits to inhibiting the earlier stage of protofibril formation. His group has designed several potential inhibitor molecules and they are currently testing their potency.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>