Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new molecular culprit for type II diabetes, Alzheimer’s and Parkinson’s

22.10.2003


Therapies for Alzheimer’s, Parkinson’s and type II diabetes should be directed toward a new molecular culprit — the precursor to the clumps of abnormal proteins that have garnered attention for the last century.



Israeli scientists say they have solid evidence that the precursor molecules — called protofibrils — are the problem molecules in type II diabetes, and their results support a similar mechanism for Alzheimer’s and Parkinson’s. Further, they say that the current focus on breaking up the abnormal clumps of protein — called fibrils — may in fact be doing more harm than good.

The report appeared in the Sept. 23 edition of Biochemistry, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.


Proteins are the chemical workhorses of the body. These long chains of amino acids fold into myriad forms, but they must assume the right three-dimensional structure to function properly. Misfolded proteins are the basis of a number of seemingly unconnected diseases, including age-related diseases like type II diabetes, Alzheimer’s and Parkinson’s, as well as "mad cow" (BSE) and other prion diseases.

Despite many years of investigation, the actual mechanism of misfolding has eluded researchers, leaving them without the understanding necessary to develop effective treatments or even properly diagnose the diseases.

The most popular theory has revolved around long clumps of misfolded proteins known as amyloid fibrils that kill cells in patients. Therapeutic efforts have focused on breaking up these deposits. In Alzheimer’s they are called amyloid plaques; in Parkinson’s they are called Lewy bodies; in type II diabetes they are called islet amyloid deposits and occur in the "islets of Langerhans," the area of the pancreas where insulin is produced and regulated.

"Type II diabetes is one of the most common amyloid-related diseases," says Ehud Gazit, Ph.D., a researcher at Tel Aviv University in Israel and lead author of the study. "The Centers for Disease Control and Prevention in Atlanta estimate that more than 18 percent of American adults older than age 65 have diabetes, almost entirely of type II." As the life expectancy of people around the world continues to increase, this and other age-related diseases will become an even greater public health concern, he says.

Scientists have previously suggested that mature fibrils of the amyloid polypeptide protein — the key component of the islet deposits — are toxic to cells in the pancreas that produce insulin, attacking through tiny holes in the cell membrane. Gazit and his colleagues, graduate student Yair Porat and Sofiya Kolusheva and Raz Jelinek from Ben Gurion University, studied the interactions between the protein and cell membrane. They discovered that smaller structures formed prior to the mature fibrils, called protofibrils, are more likely to get through the membrane, and may therefore be the more toxic species.

In the past few years, other scientists have noticed the effects of protofibrils while studying Alzheimer’s and Parkinson’s, but the notion that they may be the main culprits is fairly new. Earlier this summer in another Biochemistry paper, Peter Lansbury of Harvard University suggested a possible therapeutic strategy for Parkinson’s based on stopping the formation of protofibrils.

"A very interesting point is the striking similarity between these assemblies and the structures observed in the cases of Alzehimer’s disease and Parkinson’s disease," Gazit says. The new study offers solid experimental evidence of the phenomenon in type II diabetes, and demonstrates a common thread among the three diseases.

The majority of research continues to focus on mature fibrils, but this could prove to be dangerous if the new protofibril mechanism is correct, according to Gazit. Breaking up the large amyloid deposits may actually increase the number of protofibrils, thus increasing the level of toxicity to the body.

Gazit’s new research on protofibrils is still in the early stages, but it suggests the need for a shift in focus from breaking up mature fibril deposits to inhibiting the earlier stage of protofibril formation. His group has designed several potential inhibitor molecules and they are currently testing their potency.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>