Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Controls Age at Onset of Alzheimer’s and Parkinson’s Diseases

22.10.2003


By applying a new technique that combines independent lines of genomic evidence, Duke University Medical Center researchers and colleagues have identified a single gene that influences the age at which individuals first show symptoms of Alzheimer’s and Parkinson’s diseases.



Such genes that can impact patients’ age at onset for the two very prevalent neurological disorders are of particular interest as alternative targets for treatment, said Margaret Pericak-Vance, Ph.D., director of the Duke Center for Human Genetics. Drugs that delay the onset of Alzheimer’s or Parkinson’s diseases beyond the normal human lifespan would effectively prevent them in patients at risk for the disorders, she added.

Alzheimer’s disease is the most common cause of dementia among people over the age of 65, affecting up to 4 million Americans. Parkinson’s disease -- characterized by tremors, stiffness of the limbs and trunk, slow movements and a lack of balance -- afflicts approximately 50,000 Americans each year. Both are complex disorders involving multiple genes.


"Although physicians generally consider Alzheimer and Parkinson diseases to be distinct disorders, the two exhibit a lot of overlap both clinically and pathophysiologically," said Jeffery Vance, M.D., director of Duke’s Morris K. Udall Parkinson’s Disease Research Center and associate director of the Duke Center for Human Genetics. "This study emphasizes the similarity between the two diseases by highlighting a single gene that influences their age of onset."

The team reports their findings in the Dec. 15, 2003, issue (available online Oct. 21) of Human Molecular Genetics and will present the work as a keynote paper at the annual meeting of the American Society of Human Genetics, which will be held Nov. 4-8, in Los Angeles. The major funding for the study was provided by the National Institute on Aging, the National Institute of Neurological Disorders and Stroke, the Alzheimer’s Association, the Institute de France, and the American Federation for Aging Research.

The team’s earlier work identified a broad chromosomal region linked to the age at onset of Alzheimer’s and Parkinson’s diseases. The new research -- led by Pericak-Vance, Vance, John Gilbert, Ph.D. and Yi-Ju Li, Ph.D., of the Duke Center for Human Genetics and Jonathan Haines, Ph.D., of Vanderbilt University Medical Center -- narrows that region of the genome, which contained many hundreds of genes, to a single gene known as glutathione S-transferase omega-1 or GSTO1.

The researchers overlaid three independent lines of genetic evidence to reveal those genes more likely to play a role in the disorders’ age at onset -- a method, called genomic convergence, which the Duke team developed.

The researchers first focused on Alzheimer’s disease by comparing the activity of genes in the hippocampus -- a part of the brain affected by the disorder -- of unaffected individuals and Alzheimer’s patients. The experiment uncovered four genes, including GSTO1, located in the region of the genome earlier linked to age at onset, the researchers report.

An additional analysis involving 1,773 patients with Alzheimer’s disease and 635 patients with Parkinson’s disease later found that of those four genes, only GSTO1 showed genetic differences associated with age at onset.

"By combining evidence based on gene expression and genetic association, we found a gene that modifies when the diseases start," said Li, the study’s first author. "Understanding the role this gene plays in Alzheimer and Parkinson diseases may, in the future, lead to a means to delay the disorders’ onset," she added, noting that even a short delay would benefit at-risk patients.

The Center for Human Genetics is one of five centers within Duke’s Institute for Genome Sciences and Policy. The institute represents Duke University’s comprehensive response to the broad challenges of the genomic revolution.

The international research team included scientists representing 17 institutions in the United States, the United Kingdom and Australia. Additional funding was provided by the Hilles Families Foundation, the U.S. Public Health Service, the California Department of Health Services, the Fran and Ray Stark Foundation Fund for Alzheimer’s Disease Research and GlaxoSmithKline.

contact sources :
Margaret Pericak-Vance Ph.D. , (919) 684-2063
mpv@chg.duhs.duke.edu

Jeffery Vance
jeff@chg.mc.duke.edu

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7122

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>