Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Controls Age at Onset of Alzheimer’s and Parkinson’s Diseases

22.10.2003


By applying a new technique that combines independent lines of genomic evidence, Duke University Medical Center researchers and colleagues have identified a single gene that influences the age at which individuals first show symptoms of Alzheimer’s and Parkinson’s diseases.



Such genes that can impact patients’ age at onset for the two very prevalent neurological disorders are of particular interest as alternative targets for treatment, said Margaret Pericak-Vance, Ph.D., director of the Duke Center for Human Genetics. Drugs that delay the onset of Alzheimer’s or Parkinson’s diseases beyond the normal human lifespan would effectively prevent them in patients at risk for the disorders, she added.

Alzheimer’s disease is the most common cause of dementia among people over the age of 65, affecting up to 4 million Americans. Parkinson’s disease -- characterized by tremors, stiffness of the limbs and trunk, slow movements and a lack of balance -- afflicts approximately 50,000 Americans each year. Both are complex disorders involving multiple genes.


"Although physicians generally consider Alzheimer and Parkinson diseases to be distinct disorders, the two exhibit a lot of overlap both clinically and pathophysiologically," said Jeffery Vance, M.D., director of Duke’s Morris K. Udall Parkinson’s Disease Research Center and associate director of the Duke Center for Human Genetics. "This study emphasizes the similarity between the two diseases by highlighting a single gene that influences their age of onset."

The team reports their findings in the Dec. 15, 2003, issue (available online Oct. 21) of Human Molecular Genetics and will present the work as a keynote paper at the annual meeting of the American Society of Human Genetics, which will be held Nov. 4-8, in Los Angeles. The major funding for the study was provided by the National Institute on Aging, the National Institute of Neurological Disorders and Stroke, the Alzheimer’s Association, the Institute de France, and the American Federation for Aging Research.

The team’s earlier work identified a broad chromosomal region linked to the age at onset of Alzheimer’s and Parkinson’s diseases. The new research -- led by Pericak-Vance, Vance, John Gilbert, Ph.D. and Yi-Ju Li, Ph.D., of the Duke Center for Human Genetics and Jonathan Haines, Ph.D., of Vanderbilt University Medical Center -- narrows that region of the genome, which contained many hundreds of genes, to a single gene known as glutathione S-transferase omega-1 or GSTO1.

The researchers overlaid three independent lines of genetic evidence to reveal those genes more likely to play a role in the disorders’ age at onset -- a method, called genomic convergence, which the Duke team developed.

The researchers first focused on Alzheimer’s disease by comparing the activity of genes in the hippocampus -- a part of the brain affected by the disorder -- of unaffected individuals and Alzheimer’s patients. The experiment uncovered four genes, including GSTO1, located in the region of the genome earlier linked to age at onset, the researchers report.

An additional analysis involving 1,773 patients with Alzheimer’s disease and 635 patients with Parkinson’s disease later found that of those four genes, only GSTO1 showed genetic differences associated with age at onset.

"By combining evidence based on gene expression and genetic association, we found a gene that modifies when the diseases start," said Li, the study’s first author. "Understanding the role this gene plays in Alzheimer and Parkinson diseases may, in the future, lead to a means to delay the disorders’ onset," she added, noting that even a short delay would benefit at-risk patients.

The Center for Human Genetics is one of five centers within Duke’s Institute for Genome Sciences and Policy. The institute represents Duke University’s comprehensive response to the broad challenges of the genomic revolution.

The international research team included scientists representing 17 institutions in the United States, the United Kingdom and Australia. Additional funding was provided by the Hilles Families Foundation, the U.S. Public Health Service, the California Department of Health Services, the Fran and Ray Stark Foundation Fund for Alzheimer’s Disease Research and GlaxoSmithKline.

contact sources :
Margaret Pericak-Vance Ph.D. , (919) 684-2063
mpv@chg.duhs.duke.edu

Jeffery Vance
jeff@chg.mc.duke.edu

Kendall Morgan | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7122

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>