Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the quality of life for larynx cancer patients

21.10.2003


Currently, voice rehabilitation of larynx cancer patients is performed by inserting a one-way shunt valve between trachea and oesophagus that prevents food and liquid from entering the trachea. Pressing the tracheal opening with a finger forces exhaled air through the shunt valve to the oesophagus, where soft tissue structures serve as a substitute voice. However, the voice is in many cases of poor quality and the process creates a mental barrier during speaking, as patients have to literally point at their handicap.



The NEWVOICE project aims to improve the quality of life for laryngectomees by developing a new voice-producing shunt prosthesis that is able to produce a voice with sufficient loudness, adjustable fundamental frequency and natural intonation.

Dr. Bart Verkerke, Project Manager of the Department of BioMedical Engineering at the main partner, the University of Groningen, describes how the partners initiated this work in a previous EUREKA project. “Most of the NEWVOICE participants were involved in project E! 723 ARTIFICIAL LARYNX, during which we gained a lot of the expertise in medical devices to improve the rehabilitation process that will be used in this project.”


Tackling problems
The new voice-producing element that was inspired by the lips of a trumpet player is working well technically, but poses a prototyping problem as it is too big to fit into an existing shunt valve. Work is progressing to try to develop a small voice-producing element that still has the proper frequency characteristics. At the same time, the project also aims to develop a new fixation technique, the so-called tissue connector, which allows for a larger shunt valve.

Six different concepts for the tissue connector that fastens the shunt valve in place are being tested as “it was impossible to determine which of the alternatives was the most appropriate. We will perform a pilot animal study to test them and choose the most effective,” says Verkerke.

A critical problem facing the project team is that food and fluid passing the shunt valve stimulates the formation of a biofilm. “This causes the shunt valve to malfunction, making it necessary to replace the shunt valve frequently, on average every four months,” explains Dr Mark Waters, Senior Lecturer in Biomaterials at Cardiff Dental School. “The task of the UK partners is to develop silicone rubber materials which are less susceptible to biofilm formation.”

The project has already developed coatings that slow down or prevent biofilm adhesion that could extend the life of a shunt valve for some patients considerably.

According to Verkerke, “the major challenges lying ahead include finding a material that can resist all yeasts and bacteria, proving that the concept of the tissue connector works, and finding a voice-producing element small enough to fit into a shunt valve.”

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>