Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In lab studies, blocking expression of gene reduces invasion of deadly brain tumor cells

21.10.2003


In July 2001, scientists at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute published their findings that one "isoform" or variant of a specific gene was significantly upregulated in high-grade, malignant brain tumors called glioblastoma multiforme (GBM). They theorized that this increased activity might be a critical step in the development, progression and spread of these highly aggressive tumors.



Now, in laboratory experiments designed to mimic the environment of a brain tumor and its abnormal influence on surrounding normal blood vessel cells, the researchers have found that by blocking the expression of this gene, laminin-8, they were able to reduce the tumor’s ability to invade neighboring tissue. The new study supports the hypothesis that laminin-8 is involved in the spread of these malignancies, and it reinforces the possibility that a therapy may be developed to arrest the tumors by targeting the gene.

In the original study, published in Cancer Research, the scientists used "gene array" technology to rapidly and efficiently analyze the expression of 11,004 genes in samples of low-grade tumors; high-grade tumors; brain tissue that had been located in close proximity to high-grade tumors; and unrelated normal brain tissue.


Two genes were consistently up-regulated in all high-grade and low-grade gliomas and in tissues adjacent to GBMs, the most aggressive gliomas. One of the genes was already known to be over-expressed in gliomas. The other was the alpha-4 chain of laminin, a gene that influences the thin "basement membrane" that lies beneath the surface layer of blood vessels.

One of the alpha-4 chain-containing laminin isoforms, laminin-9, was expressed mainly in the blood vessel walls of low-grade tumors and normal brain. Laminin-8 was expressed primarily in the vessel walls of the high-grade GBMs and the tissue adjacent to these types of tumors. There were some exceptions. In those cases, it was noted that an overexpression of laminin-8 correlated with a shorter time to tumor recurrence than when there was an overexpression of laminin-9. Overexpression of laminin-8 was, therefore, identified as a predictor of glioma recurrence and a potential target of intervention strategies.

These observations were reinforced by the new study, which used short strands of genetic code (Morpholino™ antisense oligonucleotides) to block the messenger RNA (mRNA) carrying the gene’s "instructions." As a result, the gene’s "protein product," laminin-8, was not produced and the invasiveness of glioma cells was significantly reduced.

Although antisense intervention was introduced more than two decades ago, new technology has overcome many earlier limitations. Unlike its predecessors, for example, Morpholino is stable in plasma.

New-generation antisense oligos are being used in studies to find effective medications and treatments for many disorders, including viruses and cancers. By blocking a gene’s effects in a laboratory setting, they enable scientists to study the gene, its control, and the interactions between gene products.

"Antisense technology is being refined not only for drug validation and diagnostic purposes but also for the development of future treatments for patients. It may become an effective tumor therapy because it offers efficiency, specificity and ease of delivery to tumor cells," said Keith L. Black, M.D., director of Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute. Dr. Black directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program and holds the Ruth and Lawrence Harvey Chair in Neuroscience.

According to Julia Y. Ljubimova, M.D., Ph.D., research scientist at the Institute, the researchers decided not to conduct the experiments using glioma cells alone because laminin-8 appears to be produced both by glioma cells and by endothelial cells. By co-culturing glioma cells and brain endothelium, they were better able to mimic the situation as it would exist in actual patient tissue. Although scientists cannot say with certainty how laminin-8 promotes the spread of gliomas, this and previous studies suggest that it reduces cell adhesion and enhances cell migration – both in glioma cells and in adjacent vascular cells – circumstances that are necessary for local tumor invasiveness.

"Antisense oligos to laminin-8 chains significantly inhibited invasion of two different glioma cell lines in vitro," said Dr. Ljubimova. "If these laboratory studies can be translated into patient therapy, antisense oligos may slow the growth and spread of aggressive gliomas. Perhaps it will be used in combination with more traditional therapies or with other genetic targeting to prolong disease-free periods and increase survival."

The study was supported by a grant from the Maxine Dunitz Neurosurgical Institute. It was conducted by scientists from the Institute, the Ophthalmology Research Laboratories at Cedars-Sinai, Osaka (Japan) University Medical Center, the Interdisciplinary Center for Clinical Research at the University of Erlangen-Nuremberg (Germany), and the Institute of Biomedicine/Anatomy at the University of Helsinki (Finland).


Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandra Van | Van Communications
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>