Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In lab studies, blocking expression of gene reduces invasion of deadly brain tumor cells

21.10.2003


In July 2001, scientists at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute published their findings that one "isoform" or variant of a specific gene was significantly upregulated in high-grade, malignant brain tumors called glioblastoma multiforme (GBM). They theorized that this increased activity might be a critical step in the development, progression and spread of these highly aggressive tumors.



Now, in laboratory experiments designed to mimic the environment of a brain tumor and its abnormal influence on surrounding normal blood vessel cells, the researchers have found that by blocking the expression of this gene, laminin-8, they were able to reduce the tumor’s ability to invade neighboring tissue. The new study supports the hypothesis that laminin-8 is involved in the spread of these malignancies, and it reinforces the possibility that a therapy may be developed to arrest the tumors by targeting the gene.

In the original study, published in Cancer Research, the scientists used "gene array" technology to rapidly and efficiently analyze the expression of 11,004 genes in samples of low-grade tumors; high-grade tumors; brain tissue that had been located in close proximity to high-grade tumors; and unrelated normal brain tissue.


Two genes were consistently up-regulated in all high-grade and low-grade gliomas and in tissues adjacent to GBMs, the most aggressive gliomas. One of the genes was already known to be over-expressed in gliomas. The other was the alpha-4 chain of laminin, a gene that influences the thin "basement membrane" that lies beneath the surface layer of blood vessels.

One of the alpha-4 chain-containing laminin isoforms, laminin-9, was expressed mainly in the blood vessel walls of low-grade tumors and normal brain. Laminin-8 was expressed primarily in the vessel walls of the high-grade GBMs and the tissue adjacent to these types of tumors. There were some exceptions. In those cases, it was noted that an overexpression of laminin-8 correlated with a shorter time to tumor recurrence than when there was an overexpression of laminin-9. Overexpression of laminin-8 was, therefore, identified as a predictor of glioma recurrence and a potential target of intervention strategies.

These observations were reinforced by the new study, which used short strands of genetic code (Morpholino™ antisense oligonucleotides) to block the messenger RNA (mRNA) carrying the gene’s "instructions." As a result, the gene’s "protein product," laminin-8, was not produced and the invasiveness of glioma cells was significantly reduced.

Although antisense intervention was introduced more than two decades ago, new technology has overcome many earlier limitations. Unlike its predecessors, for example, Morpholino is stable in plasma.

New-generation antisense oligos are being used in studies to find effective medications and treatments for many disorders, including viruses and cancers. By blocking a gene’s effects in a laboratory setting, they enable scientists to study the gene, its control, and the interactions between gene products.

"Antisense technology is being refined not only for drug validation and diagnostic purposes but also for the development of future treatments for patients. It may become an effective tumor therapy because it offers efficiency, specificity and ease of delivery to tumor cells," said Keith L. Black, M.D., director of Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute. Dr. Black directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program and holds the Ruth and Lawrence Harvey Chair in Neuroscience.

According to Julia Y. Ljubimova, M.D., Ph.D., research scientist at the Institute, the researchers decided not to conduct the experiments using glioma cells alone because laminin-8 appears to be produced both by glioma cells and by endothelial cells. By co-culturing glioma cells and brain endothelium, they were better able to mimic the situation as it would exist in actual patient tissue. Although scientists cannot say with certainty how laminin-8 promotes the spread of gliomas, this and previous studies suggest that it reduces cell adhesion and enhances cell migration – both in glioma cells and in adjacent vascular cells – circumstances that are necessary for local tumor invasiveness.

"Antisense oligos to laminin-8 chains significantly inhibited invasion of two different glioma cell lines in vitro," said Dr. Ljubimova. "If these laboratory studies can be translated into patient therapy, antisense oligos may slow the growth and spread of aggressive gliomas. Perhaps it will be used in combination with more traditional therapies or with other genetic targeting to prolong disease-free periods and increase survival."

The study was supported by a grant from the Maxine Dunitz Neurosurgical Institute. It was conducted by scientists from the Institute, the Ophthalmology Research Laboratories at Cedars-Sinai, Osaka (Japan) University Medical Center, the Interdisciplinary Center for Clinical Research at the University of Erlangen-Nuremberg (Germany), and the Institute of Biomedicine/Anatomy at the University of Helsinki (Finland).


Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. It ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandra Van | Van Communications
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>