Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene silencer may improve chemo and radiation

21.10.2003


The following news tip is based on abstracts to be presented at the annual meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO), October 19 – 23, 2003 in Salt Lake City, Utah.



Like bacteria that resist common antibiotics, cancer cells can survive chemotherapy and radiation. Radiation oncologists at the Johns Hopkins Kimmel Cancer Center report they have found a gene "silencer" that blocks a cancer cell’s ability to repair itself after drugs and radiation cause damage.

Engineered pieces of protein-encoding RNA (ribonucleic acid), the mirror image of genes’ building blocks, were used to target repair proteins in cancer cells effectively shutting the RNA down. Unable to make the necessary repair proteins, cancer cells then become susceptible to the therapy.


"By dismantling the cancer cell’s machinery to produce these repair proteins, we destroy its ability to withstand toxic chemotherapy and radiation treatments," says Theodore DeWeese, M.D., director of the Department of Radiation Oncology at the Johns Hopkins Kimmel Cancer Center.

The researchers saw a decrease in the production of targeted repair proteins by approximately 90 percent, and were able to reduce the amount of radiation needed to damage cells.

DeWeese’s research team members are Spencer J. Collis, Ph.D., Michael J. Swartz, and William G. Nelson, M.D., Ph.D.

Embargoed for Release Until Presentation on Monday, October 20th, 10:45 a.m., MT, Salt Palace Convention Center

Johns Hopkins Kimmel Cancer Center
Media Contact: Vanessa Wasta
410-955-1287
E-mail: wastava@jhmi.edu


ASTRO Press Room
801-534-4743

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>