Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research links lung cancer screening to accelerated rates of smoking cessation

21.10.2003


People screened for lung cancer by a spiral CT scanner (commonly known as a CAT scanner) have accelerated and prolonged quit rates of smoking regardless of whether the screening showed any type of malignancy. This suggests that the screening is an ideal place to provide cessation messages even to those people with or at risk for developing lung cancer.



The new study, conducted by researchers at Georgetown University’s Lombardi Comprehensive Cancer Center, will appear in the December 1 issue of the journal CANCER. The full study will be published online October 20 via Wiley InterScience (www.interscience.wiley.com/cancer).

"I think it is easy to look at people who smoke and assume that they are unable or unwilling to quit," said Lisa Sanderson Cox, Ph.D., assistant professor of oncology at the Lombardi Comprehensive Cancer Center and principal investigator of this study. "This research shows us that even people at high-risk for lung cancer were able to quit at far better rates than the national cessation average. The overriding message is a promising one: it is never too late to treat nicotine dependence."


Cox, as a fellow at the Mayo Clinic Nicotine Research Program, evaluated smoking behavior change in current and former smokers undergoing low-dose, fast spiral CT screening in a lung screening study. All study volunteers had smoked a pack or more a day for 20 plus years. Cox and her Mayo collaborators paid close attention to see if after screening, more current smokers decided to quit, and if those who had already quit remained tobacco free.

The researchers found after one-year follow-ups, 14 percent of smokers in the study had stopped smoking. In contrast, the national quit rate average among the general smoking population is 5-7 percent.

"I’m hoping we can delve into this with further studies so we can test actual cessation interventions during screenings," said Cox. "With additional biomedical research, we may be able to hone in on an intervention model that could help significantly more people quit smoking, even those who have strong nicotine dependence and are at high risk for developing lung cancer."

The American Cancer Society estimates that 157,200 lung cancer deaths will occur in the United States this year, more than any other type of cancer. Despite the fact that lung cancer is the leading cause of cancer death among women in the United States, its deadly scope is oftentimes underestimated. A recent poll conducted by the American Legacy Foundation found that only 13 percent of the survey’s respondents thought that lung cancer was the leading cause of cancer death among women in the United States.

Smoking is the leading preventable cause of lung cancer. Over 90 percent of all lung cancer cases are a result of smoking.


The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington DC area. For more information, go to www.georgetown.edu/gumc.

Lindsey Spindle | EurekAlert!
Further information:
http://www.georgetown.edu/gumc
http://www.interscience.wiley.com/cancer

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>