Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research links lung cancer screening to accelerated rates of smoking cessation

21.10.2003


People screened for lung cancer by a spiral CT scanner (commonly known as a CAT scanner) have accelerated and prolonged quit rates of smoking regardless of whether the screening showed any type of malignancy. This suggests that the screening is an ideal place to provide cessation messages even to those people with or at risk for developing lung cancer.



The new study, conducted by researchers at Georgetown University’s Lombardi Comprehensive Cancer Center, will appear in the December 1 issue of the journal CANCER. The full study will be published online October 20 via Wiley InterScience (www.interscience.wiley.com/cancer).

"I think it is easy to look at people who smoke and assume that they are unable or unwilling to quit," said Lisa Sanderson Cox, Ph.D., assistant professor of oncology at the Lombardi Comprehensive Cancer Center and principal investigator of this study. "This research shows us that even people at high-risk for lung cancer were able to quit at far better rates than the national cessation average. The overriding message is a promising one: it is never too late to treat nicotine dependence."


Cox, as a fellow at the Mayo Clinic Nicotine Research Program, evaluated smoking behavior change in current and former smokers undergoing low-dose, fast spiral CT screening in a lung screening study. All study volunteers had smoked a pack or more a day for 20 plus years. Cox and her Mayo collaborators paid close attention to see if after screening, more current smokers decided to quit, and if those who had already quit remained tobacco free.

The researchers found after one-year follow-ups, 14 percent of smokers in the study had stopped smoking. In contrast, the national quit rate average among the general smoking population is 5-7 percent.

"I’m hoping we can delve into this with further studies so we can test actual cessation interventions during screenings," said Cox. "With additional biomedical research, we may be able to hone in on an intervention model that could help significantly more people quit smoking, even those who have strong nicotine dependence and are at high risk for developing lung cancer."

The American Cancer Society estimates that 157,200 lung cancer deaths will occur in the United States this year, more than any other type of cancer. Despite the fact that lung cancer is the leading cause of cancer death among women in the United States, its deadly scope is oftentimes underestimated. A recent poll conducted by the American Legacy Foundation found that only 13 percent of the survey’s respondents thought that lung cancer was the leading cause of cancer death among women in the United States.

Smoking is the leading preventable cause of lung cancer. Over 90 percent of all lung cancer cases are a result of smoking.


The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington DC area. For more information, go to www.georgetown.edu/gumc.

Lindsey Spindle | EurekAlert!
Further information:
http://www.georgetown.edu/gumc
http://www.interscience.wiley.com/cancer

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>