Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research links lung cancer screening to accelerated rates of smoking cessation

21.10.2003


People screened for lung cancer by a spiral CT scanner (commonly known as a CAT scanner) have accelerated and prolonged quit rates of smoking regardless of whether the screening showed any type of malignancy. This suggests that the screening is an ideal place to provide cessation messages even to those people with or at risk for developing lung cancer.



The new study, conducted by researchers at Georgetown University’s Lombardi Comprehensive Cancer Center, will appear in the December 1 issue of the journal CANCER. The full study will be published online October 20 via Wiley InterScience (www.interscience.wiley.com/cancer).

"I think it is easy to look at people who smoke and assume that they are unable or unwilling to quit," said Lisa Sanderson Cox, Ph.D., assistant professor of oncology at the Lombardi Comprehensive Cancer Center and principal investigator of this study. "This research shows us that even people at high-risk for lung cancer were able to quit at far better rates than the national cessation average. The overriding message is a promising one: it is never too late to treat nicotine dependence."


Cox, as a fellow at the Mayo Clinic Nicotine Research Program, evaluated smoking behavior change in current and former smokers undergoing low-dose, fast spiral CT screening in a lung screening study. All study volunteers had smoked a pack or more a day for 20 plus years. Cox and her Mayo collaborators paid close attention to see if after screening, more current smokers decided to quit, and if those who had already quit remained tobacco free.

The researchers found after one-year follow-ups, 14 percent of smokers in the study had stopped smoking. In contrast, the national quit rate average among the general smoking population is 5-7 percent.

"I’m hoping we can delve into this with further studies so we can test actual cessation interventions during screenings," said Cox. "With additional biomedical research, we may be able to hone in on an intervention model that could help significantly more people quit smoking, even those who have strong nicotine dependence and are at high risk for developing lung cancer."

The American Cancer Society estimates that 157,200 lung cancer deaths will occur in the United States this year, more than any other type of cancer. Despite the fact that lung cancer is the leading cause of cancer death among women in the United States, its deadly scope is oftentimes underestimated. A recent poll conducted by the American Legacy Foundation found that only 13 percent of the survey’s respondents thought that lung cancer was the leading cause of cancer death among women in the United States.

Smoking is the leading preventable cause of lung cancer. Over 90 percent of all lung cancer cases are a result of smoking.


The Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Lombardi is one of only 39 comprehensive cancer centers in the nation, as designated by the National Cancer Institute, and the only one in the Washington DC area. For more information, go to www.georgetown.edu/gumc.

Lindsey Spindle | EurekAlert!
Further information:
http://www.georgetown.edu/gumc
http://www.interscience.wiley.com/cancer

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>