Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins enable HIV to override cell’s defenses

17.10.2003


Discovery of protein chain may lead to new drugs and treatments



Researchers at the Johns Hopkins Bloomberg School of Public Health have identified a complex series of proteins that enable HIV to bypass the natural defenses of human cells and replicate. The discovery of these proteins is the key for understanding how HIV overcomes host defenses and could potentially be new targets for HIV medications. A study detailing the finding is published in the October 16, 2003, online version of the journal Science.

As the researchers explained in their article, viruses like HIV contain a viral infectivity factor (Vif), which is essential for evading the human cell’s natural antiviral agent called APOBEC3G. To disable the antiviral agent, Vif interacts with a series of proteins to modify (polyubiquitination) and degrade APOBEC3G. Xiao-Fang Yu, MD, DSc, an associate professor with the School’s Department of Molecular Microbiology and Immunology, and his colleagues have identified these proteins as Cullin5, Elongins B and C and Rbx1. Together, they form a complex of proteins called ubiquitin E3 ligase (Cul5-SCF), which interacts with Vif and APOBEC3G.


"We’ve discovered a new link in the chain that allows the HIV to overcome the cellular resistant factor and to infect human cells," said Dr. Yu. "By identifying the proteins involved in this process, we may be able to develop new drugs and therapies for preventing HIV infection."

Through a series of laboratory experiments, Dr. Yu’s team further found that disruption of the Cul5-SCF function makes HIV less infectious and less able of suppress APOBEC3G and its protective properties. HIV infectiousness was reduced 90 percent when Cul5 mutants were over expressed in combination with APOBEC3G.

Dr. Yu and his collaborators, Drs. Xianghui Yu, Yunkai Yu, Bindong Liu and Kun Luo, are working on further explaining the mechanism of Vif and Cul5 complex interaction and identifying strategies to block Vif function and consequently HIV infection.


"Induction of Ubiquitination and Degradation of APOBEC3G by HIV-1 Vif-Cul5-SCF" was written by Xianghui Yu, Yunkai Yu, Bindong Liu, Kun Luo, Wei Kong, Panyong Mao and Xiao-Fang Yu.

The study was funded by grants from National Center for Research Resources. Reagents were supplied by the AIDS Research Reagent Program, division of AIDS, NIAID, NIH.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu/Press_Room

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>