Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New teeth implants

16.10.2003


Implants are artificial roots which are used to insert teeth and which nowadays give very good results. Nevertheless, the Inasmet Foundation together with the dental specialist Mikel Maeztu is developing a new treatment for the Donostia company, Lifenova Biomedical. This treatment will help to strengthen the union between implant and bone. It involves implants inserted through ionic implantation.



The aim of the research is to develop new implants for human patients, and so before carrying out the first tests on humans, many previous tests have to be carried out, both at the laboratory level and with animals. To date tests have been carried out with rabbits and dogs and eventually will be carried out on humans.

The problem arises from the fact that not just any material may be implanted into the body. On the material being foreign to the organism, it will be attacked by the immune system. Thus, it is important to use material that will not trigger an immune response, i.e. biocompatible materials. These materials are called biomaterials, and they are ever-increasingly used in medicine.


This biocompatibility is also necessary in the case of dental implants. Titanium is precisely what is used as it is inert and has a very high level of compatibility with human tissues.

But, apart from being accepted by the organism, it is important that the bone cells grow well around the implant. If this does not happen, then the artificial tooth will have little strength.

This is precisely what is being investigated in Inasmet. They are trying to obtain a stronger union between bone and implant. To this end, the implants used are not new but the treatment applied to them is.

With this treatment of osteoblasts, the bone cells strongly bond the titanium, more strongly than with other kinds of treatment. This strong bonding makes the cells and, therefore, the bone, grow over the titanium. In this way the treatment increases the capacity of the human body itself to regenerate.

Finally high-powered microscopes are used to see if the bone has grown around the implant. The electronic microscope, for example, enables the implant-bone union with great clarity; i.e. the situation of each cell growing around the implant can be seen, one by one, and so, in this way, the quality of the new treatment can be inspected.

To date, the treatment has provided good results wilt cells and with animals, all that is needed now is to test trial with humans.

Contact :

ELHUYAR Fundazioa
aitzibera@elhuyar.com
(+34) 943363040

Aitziber Agirre | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=339&hizk=I
http://www.inasmet.es

More articles from Health and Medicine:

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>