Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein provides clue to diabetes

16.10.2003


Although cases of adult-onset diabetes have skyrocketed in the United States, researchers still don’t know much about the biological processes that predispose so many people to the disease. But in research that will be published in the Oct. 16 issue of the journal Nature, scientists say they’ve found a protein that plays an essential role in regulating a cell’s ability to absorb glucose, an important step toward gaining a better understanding of the underlying causes of diabetes.



Now that researchers know how this crucial protein reacts in normal cells, they can study how it functions in diabetic patients. The findings ultimately may lead to new drug targets for diabetes medications, says Harvey Lodish, a scientist at Whitehead Institute for Biomedical Research and co-author of the new study.

The researchers discovered the protein – which they call TUG – following a five-year search for molecules that control a glucose transporter named GLUT4, according to Jonathan Bogan, lead author on the paper and former scientist in both Lodish’s laboratory and the Diabetes Unit at Massachusetts General Hospital.


"This discovery has all the attributes of being extremely important to understanding, and maybe treating, Type 2 diabetes," says Lodish.

Nearly 17 million Americans have Type 2 (adult-onset) diabetes, a disorder in which cells lose their ability to absorb glucose from the blood stream. This is different from Type 1 (juvenile onset) diabetes, in which the immune system attacks insulin-producing cells. Normally, when blood sugar levels rise, the pancreas secretes the hormone insulin, which travels through the blood and interacts with "receptors" on the surface of cells in muscle and fat, instructing the cells to absorb and store the excess glucose.

But in Type 2 diabetes, the cells become deaf to insulin’s signals, a condition known as insulin resistance. "No one really knows what causes it," says Bogan, who now is an assistant professor at Yale University School of Medicine. "We don’t even know very much about how the process works in normal cells. Learning the normal process is the first step in learning more about insulin resistance."

Key to this are glucose transporters, a class of proteins that shuttles glucose molecules through the membrane and into the body of the cell. The first glucose transporter was discovered in 1985 in Lodish’s lab. Several others, including GLUT4, have been discovered since then. While most glucose transporters reside at the cell surface, GLUT4 is usually deep inside the cell, only moving to the surface when insulin sends a signal. It is the only transporter that responds exclusively to the presence of insulin.

For the study, Bogan engineered GLUT4 proteins so that they contained two distinct fluorescent tags, and studied them in cultured fat cells. One tag glowed only when GLUT4 appeared at the cell surface. The other was detectable at any location in the cell, enabling Bogan to measure GLUT4 distribution within the cells. He then tested a collection of approximately 2.4 million proteins to see which ones had an effect on GLUT4 distribution.

"By using the tags," Bogan says, "we were able to sift through all the cells and find this needle in a haystack."

Bogan found that one protein, TUG, had a significant effect on GLUT4, acting as a tether that binds GLUT4 inside the cell. When insulin reaches the cell surface, it signals TUG to release GLUT4, which then moves to the cell surface to allow glucose absorption. These study results suggest that excess tethering may somehow contribute to insulin resistance.

Lodish proposes that discovering this key component of the GLUT4 pathway is a significant clue for possibly identifying a diabetes drug target. "Insulin shots just overwhelm the cell and hopefully make it respond to insulin," he says. "But so far, there aren’t any drugs that act directly on this pathway. Now we can begin to speculate, for example, that a drug which blocks TUG might enhance a cell’s ability to absorb glucose. It’s an hypothesis, but an easy one to test."

Joseph Avruch, professor at Harvard Medical School and chief of the diabetes unit at Massachusetts General Hospital, is no stranger to the world of diabetes research. "This is probably the most important discovery in the insulin glucose transport field that’s come along in years," he says. "This is a big step in understanding how insulin resistance works, and opens the way to possibly getting around the impediments that exist in Type 2 diabetes."

While Lodish continues to explore other molecular mechanisms of diabetes, Bogan is continuing the TUG research in his laboratory at Yale, identifying other proteins that interact with TUG and studying mice in which TUG has been genetically altered or deleted. Whitehead Institute and Massachusetts General Hospital own the patent for the technology used to discover TUG and are licensing it to pharmaceutical companies who are employing it in the search for diabetes drug targets.

Says Avruch, "TUG might turn out to be a target, or it might be the key that opens the door to understanding how the system works. Either way, this is still a very important step forward."

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu/home.html

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>