Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Liège and CHU develop a new surgical technique for treating feminine stress urinary incontinence

15.10.2003


According to estimates, 10 % of women suffer from urinary incontinence, which can occur at all ages. Stress urinary incontinence is the most prevalent form of the condition and can result from intensive physical exercise, childbirth, weakened pelvic floor muscles, a decrease in blood oestrogen levels, a gynaecological operation or tissue ageing. Most stress urinary incontinence cases can be treated or cured. Several treatments, including surgery, have long helped patients with this psychologically unpleasant, sociologically undermining condition.

In the last decade, operating techniques have become less and less invasive, greatly improving patient comfort. In 1995, Prof. Dr Ulf Ulmsten from Sweden developed a “revolutionary” method called TVT (Tension Free Vaginal Tape), which is marketed by Gynecare. During this procedure, a PROLENE® mesh tape is inserted through a small incision in the vagina to support the urethra during stress, thereby preventing urine loss. This relatively simple treatment takes approximately 30 minutes, is performed under local anaesthesia and has excellent results (85% successfully treated).

An Original Technique



The TVT technique was introduced in Belgium in 1998. Gynaecologists and urologists created the “Belgium TVT Study Group” in May 1999. In view of the technique’s positive results, the Belgian National Sickness and Invalidity Insurance Institute agreed to finance the device in January 2001.

Jean de Leval is a Professor at the University of Liège’s Medicine Faculty and a urologist at Liège University Hospital. He took part in the Belgium TVT Study Group’s activities very early and showed fellow urologists the significance and efficacy of this technique. With a view to constant innovation, Professor de Leval simultaneously contributed to the TVT technique’s evolution in order to offer surgeons an additional alternative.

At the beginning of the 2000’s, the technique for placing the TVT mesh tape evolved. Surgeons began placing the mesh through two natural orifices in the pelvis called obturator holes, using needles guided from the perineum to the vagina (“outside in”). Professor de Leval’s technique also places the mesh using the obturator holes, but the novelty in his approach is that the needles placing the mesh pass from the vagina outward through the perineum (i.e., “inside out”), away from other organs.

The new method is based on Professor de Leval’s Agrégation thesis on continence mechanisms. The new instruments required for the surgical operation were designed by Liège University Hospital in cooperation with Medi-Line, located in the LIEGE Science Park.

Partnership Agreement

The American company Gynecare purchased the technique’s marketing rights and will distribute the Liège-developed method throughout the world.

The partnership agreement also provides for a number of contributions from Liège partners. Gynecare will work with Liège-based company Medi-Line to produce a part of the medical device, and with Professor de Leval’s team and the University Hospital on training aimed at surgeons specialised in this pathology.

The University of Liège and Liège University Hospital are very pleased about this agreement, which allows them to promote joint research results and illustrates the successful synergies between the university institution and hospital

Didier Moreau | alfa
Further information:
http://www.gynecare.com

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>