Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Thoughts translate to actions


Some 200,000 people live with partial or nearly total permanent paralysis in the United States, with spinal cord injuries adding 11,000 new cases each year. Most research aimed at recovering motor function has focused on repairing damaged nerve fibers, which has succeeded in restoring limited movement in animal experiments. But regenerating nerves and restoring complex motor behavior in humans are far more difficult, prompting researchers to explore alternatives to spinal cord rehabilitation.

One promising approach involves circumventing neuronal damage by establishing connections between healthy areas of the brain and virtual devices, called brain–machine interfaces (BMIs), programmed to transform neural impulses into signals that can control a robotic device. While experiments have shown that animals using these artificial actuators can learn to adjust their brain activity to move robot arms, many issues remain unresolved, including what type of brain signal would provide the most appropriate inputs to program these machines.

As they report in this paper, Miguel Nicolelis and colleagues have helped clarify some of the fundamental issues surrounding the programming and use of BMIs. Presenting results from a series of long-term studies in monkeys, they demonstrate that the same set of brain cells can control two distinct movements, the reaching and grasping of a robotic arm. This finding has important practical implications for spinal-cord patients--if different cells can perform the same functions, then surgeons have far more flexibility in how and where they can introduce electrodes or other functional enhancements into the brain. The researchers also show how monkeys learn to manipulate a robotic arm using a BMI. And they suggest how to compensate for delays and other limitations inherent in robotic devices to improve performance.

By charting the relationship between neural signals and motor movements, Nicolelis et al. demonstrate how BMIs can work with healthy neural areas to reconfigure the brain’s motor command neuronal elements and help restore intentional movement. These findings, they say, suggest that such artificial models of arm dynamics could one day be used to retrain the brain of a patient with paralysis, offering patients not only better control of prosthetic devices but the sense that these devices are truly an extension of themselves.

Miguel Nicolelis
Duke University Medical Center
Durham, NC 27710
United States of America

Barbara Cohen | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>