Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thoughts translate to actions

13.10.2003


Some 200,000 people live with partial or nearly total permanent paralysis in the United States, with spinal cord injuries adding 11,000 new cases each year. Most research aimed at recovering motor function has focused on repairing damaged nerve fibers, which has succeeded in restoring limited movement in animal experiments. But regenerating nerves and restoring complex motor behavior in humans are far more difficult, prompting researchers to explore alternatives to spinal cord rehabilitation.



One promising approach involves circumventing neuronal damage by establishing connections between healthy areas of the brain and virtual devices, called brain–machine interfaces (BMIs), programmed to transform neural impulses into signals that can control a robotic device. While experiments have shown that animals using these artificial actuators can learn to adjust their brain activity to move robot arms, many issues remain unresolved, including what type of brain signal would provide the most appropriate inputs to program these machines.

As they report in this paper, Miguel Nicolelis and colleagues have helped clarify some of the fundamental issues surrounding the programming and use of BMIs. Presenting results from a series of long-term studies in monkeys, they demonstrate that the same set of brain cells can control two distinct movements, the reaching and grasping of a robotic arm. This finding has important practical implications for spinal-cord patients--if different cells can perform the same functions, then surgeons have far more flexibility in how and where they can introduce electrodes or other functional enhancements into the brain. The researchers also show how monkeys learn to manipulate a robotic arm using a BMI. And they suggest how to compensate for delays and other limitations inherent in robotic devices to improve performance.


By charting the relationship between neural signals and motor movements, Nicolelis et al. demonstrate how BMIs can work with healthy neural areas to reconfigure the brain’s motor command neuronal elements and help restore intentional movement. These findings, they say, suggest that such artificial models of arm dynamics could one day be used to retrain the brain of a patient with paralysis, offering patients not only better control of prosthetic devices but the sense that these devices are truly an extension of themselves.

CONTACT:
Miguel Nicolelis
Duke University Medical Center
Durham, NC 27710
United States of America
919-684-4580
nicoleli@neuro.duke.edu

Barbara Cohen | EurekAlert!
Further information:
http://www.plos.org/downloads/plbi-01-02-carmena.pdf
http://www.plos.org

More articles from Health and Medicine:

nachricht Highly precise wiring in the Cerebral Cortex
21.09.2017 | Max-Planck-Institut für Hirnforschung

nachricht PET imaging tracks Zika virus infection, disease progression in mouse model
20.09.2017 | US Army Medical Research Institute of Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>