Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar coupled to protein causes kidneys to save water

10.10.2003



Giel Hendriks discovered that the linking of sugars to the protein aquaporin-2 (AQP2) is necessary for the transport of water channels to the cell surfaces in the kidneys. If the protein is not linked to a sugar, it still forms functional water channels. However, these channels no longer end up at the cell surface where they need to do their work.

Kidneys extract water containing dissolved waste substances from the blood. Each day human kidneys produced about 180 litres of this so-called pro-urine. The excretion of all of this fluid would rapidly result in dehydration and eventual death. Therefore with the help of the water channels, the body returns about 99% of this water from the pro-urine to the kidney tissue. As a result of this a person only loses about 1.5 litres of urine per day.


The protein aquaporin-2 regulates a significant part of this water reuse. This protein forms water channels. These are transported from small storage vesicles to the cell surface, where they can collect the water and return it to the kidney tissue.

Mutations in AQP2 give rise to the disease nephrogenic diabetes insipidus (NDI). Patients with this disease lose 15 to 20 litres of urine per day. Knowing how AQP2 is transported to the cell surface and how it works there, is a prerequisite for developing a treatment for this disease.

In addition to the effect of sugars, Hendriks also studied the role of the small signalling protein ubiquitin in the functioning of AQP2. Ubiquitin ensures the breakdown of proteins and is important for quality control during the production of new proteins. Hendriks isolated AQP2 proteins to which a single ubiquitin was bound. Separating the proteins on the cell surface from those inside the cell revealed that only AQP2 with a single ubiquitin is located on the cell surface. The role of this coupling in the functioning of the protein will be investigated in a follow-up study by the Utrecht group.

Finally, the researchers isolated a new protein from a mouse kidney, AQP2-BP that directly binds to AQP2. Up until now no proteins capable of binding to AQP2 were known. By inserting both proteins in kidney cells, Hendriks discovered that AQP2-BP is important for the production of the useful protein AQP2.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>