Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar coupled to protein causes kidneys to save water

10.10.2003



Giel Hendriks discovered that the linking of sugars to the protein aquaporin-2 (AQP2) is necessary for the transport of water channels to the cell surfaces in the kidneys. If the protein is not linked to a sugar, it still forms functional water channels. However, these channels no longer end up at the cell surface where they need to do their work.

Kidneys extract water containing dissolved waste substances from the blood. Each day human kidneys produced about 180 litres of this so-called pro-urine. The excretion of all of this fluid would rapidly result in dehydration and eventual death. Therefore with the help of the water channels, the body returns about 99% of this water from the pro-urine to the kidney tissue. As a result of this a person only loses about 1.5 litres of urine per day.


The protein aquaporin-2 regulates a significant part of this water reuse. This protein forms water channels. These are transported from small storage vesicles to the cell surface, where they can collect the water and return it to the kidney tissue.

Mutations in AQP2 give rise to the disease nephrogenic diabetes insipidus (NDI). Patients with this disease lose 15 to 20 litres of urine per day. Knowing how AQP2 is transported to the cell surface and how it works there, is a prerequisite for developing a treatment for this disease.

In addition to the effect of sugars, Hendriks also studied the role of the small signalling protein ubiquitin in the functioning of AQP2. Ubiquitin ensures the breakdown of proteins and is important for quality control during the production of new proteins. Hendriks isolated AQP2 proteins to which a single ubiquitin was bound. Separating the proteins on the cell surface from those inside the cell revealed that only AQP2 with a single ubiquitin is located on the cell surface. The role of this coupling in the functioning of the protein will be investigated in a follow-up study by the Utrecht group.

Finally, the researchers isolated a new protein from a mouse kidney, AQP2-BP that directly binds to AQP2. Up until now no proteins capable of binding to AQP2 were known. By inserting both proteins in kidney cells, Hendriks discovered that AQP2-BP is important for the production of the useful protein AQP2.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

nachricht Chances to treat childhood dementia
24.07.2017 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>