Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV protein attacks body’s innate protection system that could prevent virus’ replication

08.10.2003


Discovery could lead to development of protein-targeting drugs, OHSU researchers say



When HIV enters the human body, a fierce battle ensues between a ruthless viral protein and our long-misunderstood innate protection system. Ultimately, the protein seizes and destroys that system, and HIV replicates.

But Oregon Health & Science University researchers who discovered the mechanism by which this destruction occurs say our innate protection system could have a leg up in the mêlée if drugs can be developed to target the HIV-encoded viral protein.


"We’re thrilled about this," David Kabat, Ph.D., professor of biochemistry and molecular biology at OHSU, said of the discovery.

His OHSU collaborators were: Mariana Marin, research assistant professor, Susan Kozak, senior research associate, Department of Biochemistry and Molecular Biology; and Kristin Rose, graduate research assistant, Department of Molecular Microbiology and Immunology.

The study, published Sunday in the November issue of the journal Nature Medicine, could have major implications for AIDS research. Not only does it give scientists insights into how the body’s built-in defense system works, it’s a shot in the arm for the search for more targeted, effective anti-HIV drugs.

"This is definitely relevant to drug development and pharmacology in the fight against AIDS," Kabat said.

Kabat’s team found that the HIV-encoded protein – viral infectivity factor, or Vif – neutralizes a potent antiviral human protein called APOBEC3G that would, in the absence of Vif, inactivate HIV. Vif binds to APOBEC3G and induces its "extremely" rapid degradation, eliminating APOBEC3G from cells and keeping it from invading HIV particles where it could damage the virus’ genetic material.

APOBEC3G is a nucleic acid-editing enzyme that exists in some cells, like white blood cells, but is absent in others, such as skin cells. Cells where APOBEC3G is present are "non-permissive," meaning they don’t allow replication of an HIV mutant which lacks a Vif gene.

When HIV or another virus is detected, APOBEC3G edits and fragments the virus’ nucleic acid.

"The body has an innate system that is capable of ridding itself of HIV," Kabat said. "But Vif counteracts and neutralizes this defense system of the body, providing a safe nest in which HIV progeny get produced. Vif comes in and somehow recognizes this innate system. If Vif isn’t there, the progeny get destroyed during their birth."

Kabat’s team began work on Vif in 1997 and published its first paper on the viral protein a year later. At that time, the scientists developed insights about Vif that suggested the existence of a potent antiviral defense system in human lymphocytes, and that it was Vif’s job to destroy it.

"We knew what to look for, but we didn’t know it was APOBEC3G," Kabat said.

Scientists had known for 10 years that a relative of APOBEC3G, APOBEC1, was an nucleic acid-editing enzyme that regulates normal cellular function, but which doesn’t have an antiviral effect. Ten months ago a group of scientists in Philadelphia identified APOBEC3G as the cellular defense mechanism everyone was looking for, and the field was "cracked open."

"APOBEC3G is related to APOBEC1. That was a clue," Kabat said. "When this group in Philadelphia discovered APOBEC3G was involved in antiviral response, it was the first indication these nucleic acid-editing enzymes evolved to attack viruses."

Since making its recent discovery, the OHSU team has worked to set up a system in which Vif and APOBEC3G exist in the same cell, which will let researchers examine APOBEC3G’s destruction in more detail while allowing it to be continually produced. It also is working to develop enough Vif so its structure can be studied further.

"We’re going to try to learn exactly how Vif destroys APOBEC3G in greater and greater mechanistic detail," Kabat said.

Kabat plans to create a platform for screening potential anti-Vif drugs with the help of robotics that pull from a chemical library. The team also will work directly with drug companies on testing their products.

"The drug discovery approach is so important and we’re going to try to make a big contribution to it," he said. "The results we have provide assays, tests and information one needs to develop drugs against Vif. These tools are useful for screening drugs, but also for testing candidate drugs."

Kabat noted that the American Foundation for AIDS Research (amfAR) has put a premium on anti-Vif drug discovery. "It’s definitely been recognized as an important frontier in the fight against AIDS," he said.


The study was supported by a grant from the National Institutes of Health.

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>