Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV protein attacks body’s innate protection system that could prevent virus’ replication

08.10.2003


Discovery could lead to development of protein-targeting drugs, OHSU researchers say



When HIV enters the human body, a fierce battle ensues between a ruthless viral protein and our long-misunderstood innate protection system. Ultimately, the protein seizes and destroys that system, and HIV replicates.

But Oregon Health & Science University researchers who discovered the mechanism by which this destruction occurs say our innate protection system could have a leg up in the mêlée if drugs can be developed to target the HIV-encoded viral protein.


"We’re thrilled about this," David Kabat, Ph.D., professor of biochemistry and molecular biology at OHSU, said of the discovery.

His OHSU collaborators were: Mariana Marin, research assistant professor, Susan Kozak, senior research associate, Department of Biochemistry and Molecular Biology; and Kristin Rose, graduate research assistant, Department of Molecular Microbiology and Immunology.

The study, published Sunday in the November issue of the journal Nature Medicine, could have major implications for AIDS research. Not only does it give scientists insights into how the body’s built-in defense system works, it’s a shot in the arm for the search for more targeted, effective anti-HIV drugs.

"This is definitely relevant to drug development and pharmacology in the fight against AIDS," Kabat said.

Kabat’s team found that the HIV-encoded protein – viral infectivity factor, or Vif – neutralizes a potent antiviral human protein called APOBEC3G that would, in the absence of Vif, inactivate HIV. Vif binds to APOBEC3G and induces its "extremely" rapid degradation, eliminating APOBEC3G from cells and keeping it from invading HIV particles where it could damage the virus’ genetic material.

APOBEC3G is a nucleic acid-editing enzyme that exists in some cells, like white blood cells, but is absent in others, such as skin cells. Cells where APOBEC3G is present are "non-permissive," meaning they don’t allow replication of an HIV mutant which lacks a Vif gene.

When HIV or another virus is detected, APOBEC3G edits and fragments the virus’ nucleic acid.

"The body has an innate system that is capable of ridding itself of HIV," Kabat said. "But Vif counteracts and neutralizes this defense system of the body, providing a safe nest in which HIV progeny get produced. Vif comes in and somehow recognizes this innate system. If Vif isn’t there, the progeny get destroyed during their birth."

Kabat’s team began work on Vif in 1997 and published its first paper on the viral protein a year later. At that time, the scientists developed insights about Vif that suggested the existence of a potent antiviral defense system in human lymphocytes, and that it was Vif’s job to destroy it.

"We knew what to look for, but we didn’t know it was APOBEC3G," Kabat said.

Scientists had known for 10 years that a relative of APOBEC3G, APOBEC1, was an nucleic acid-editing enzyme that regulates normal cellular function, but which doesn’t have an antiviral effect. Ten months ago a group of scientists in Philadelphia identified APOBEC3G as the cellular defense mechanism everyone was looking for, and the field was "cracked open."

"APOBEC3G is related to APOBEC1. That was a clue," Kabat said. "When this group in Philadelphia discovered APOBEC3G was involved in antiviral response, it was the first indication these nucleic acid-editing enzymes evolved to attack viruses."

Since making its recent discovery, the OHSU team has worked to set up a system in which Vif and APOBEC3G exist in the same cell, which will let researchers examine APOBEC3G’s destruction in more detail while allowing it to be continually produced. It also is working to develop enough Vif so its structure can be studied further.

"We’re going to try to learn exactly how Vif destroys APOBEC3G in greater and greater mechanistic detail," Kabat said.

Kabat plans to create a platform for screening potential anti-Vif drugs with the help of robotics that pull from a chemical library. The team also will work directly with drug companies on testing their products.

"The drug discovery approach is so important and we’re going to try to make a big contribution to it," he said. "The results we have provide assays, tests and information one needs to develop drugs against Vif. These tools are useful for screening drugs, but also for testing candidate drugs."

Kabat noted that the American Foundation for AIDS Research (amfAR) has put a premium on anti-Vif drug discovery. "It’s definitely been recognized as an important frontier in the fight against AIDS," he said.


The study was supported by a grant from the National Institutes of Health.

Jonathan Modie | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht 'Exciting' discovery on path to develop new type of vaccine to treat global viruses
18.09.2017 | University of Southampton

nachricht A new approach to high insulin levels
18.09.2017 | Schweizerischer Nationalfonds SNF

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>