Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imagining movement of affected limbs aids stroke rehabilitation

08.10.2003


Imagining movement of arms and legs that have been weakened from stroke may facilitate functional recovery of affected limbs, a Northwestern University study has found.



The effects of stroke vary, based on the type of stroke and its severity and location in the brain. The majority of strokes affect one of the brain’s hemispheres, resulting in muscle weakness or paralysis on the opposite side of the body -- a condition known as hemiparesis.

Jennifer A. Stevens and co-researchers at the Feinberg School of Medicine and the Rehabilitation Institute of Chicago used a motor imagery training program for patients with hemiparesis, consisting of imagined wrist movements and mental simulations of reaching and object manipulation making use of a mirror-box apparatus.


An article describing their study appeared in a recent issue of Archives of Physical Medicine and Rehabilitation. The intervention targets the cognitive level of action processing, while its effects may be realized in overt behavioral performance, said Stevens, research assistant professor of physical medicine and rehabilitation at the Feinberg School.

"Actions generated using motor imagery adhere to the same movement rules and constraints that physical movements follow, and the neural network involved in motor imagery and motor execution overlap in areas of the brain concerned with movement," said Stevens. The program consisted of three one-hour sessions for four consecutive weeks. The first task was computer-facilitated motor imagery training, during which time the participant was instructed to explicitly imagine his/her own hand completing a movement just observed on a computer screen.

For the second task, simulating, for example, the left arm moving, the investigators had the participant move the right arm around in the mirror-box workspace, resulting in a reflection of the affected left limb moving about successfully in space. Participants were instructed to "imagine the reflected limb actually is your limb moving about."

Results showed that performance of the affected limb improved after the imagery intervention, indicated by increases in assessment scores and functionality and decreases in movement times.

Stevens and colleagues found that the greatest increases in function generally occurred during the month of intervention, suggesting that the behavioral effects were associated with the actual practice of mental simulation. It also is possible that motor simulation therapy in early stages of recovery -- that is, less than six months -- may increase the degree of this effect, Stevens said.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>