Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find more efficient way to ’unlearn’ fear

07.10.2003


Could help improve treatment of anxiety

Behavior therapists may have a better way to help anxious patients, thanks to insights from a UCLA study of different ways to get mice past their fears. Rodents have long been used to study learning by association. Neuroscientists compared different ways of exposing mice to a stimulus that they had learned to fear, and found that "massing" the feared stimulus -– delivering it in concentrated bursts, not pacing it with longer pauses in between -- was surprisingly efficient at helping to erase its impact. This study appears in the October issue of the Journal of Experimental Psychology: Animal Behavior Processes, which is published by the American Psychological Association.

According to the authors, doctoral students Christopher Cain and Ashley Blouin, and Mark Barad, M.D., Ph.D., these findings are significant for clinical behavioral therapy, which has been scientifically proven to work in a range of human anxiety disorders, including specific phobias, panic disorder, social phobia, post-traumatic stress disorder, and obsessive-compulsive disorder.



At the University of California, Los Angeles, the researchers taught mice (in most conditions, eight at a time) to fear harmless white noise by associating it with a mild shock delivered through the floor of the experimental cage. After a couple of trials, the mice "froze" –- just stopped moving, a fear response –- for about 72 seconds, or 60 percent of the two minutes of white noise. Thus, the white noise became what’s called a "conditioned stimulus." It may not have been the original source of pain, but it became sufficiently associated with pain to cause fear all by itself.

Next, Cain and his colleagues separated the mice into three groups and measured how well they overcame their aversion to white noise when they heard it 20 times for two minutes each, without shocks -– with intervals of six, 60 or 600 seconds between each presentation. Repeatedly presenting a conditioned stimulus has long been known to "extinguish" a fear by exposing animals (including humans) to that stimulus without associated pain. In the study, for example, some of the mice learned to trust that white noise would not come with shocks. In a human parallel, someone who had developed a fear of dogs after being bitten could be exposed to playful, gentle dogs as a way to re-learn that most are safe.

The only catch is that anxiety is like an unwanted houseguest: It breezes in quickly, without invitation, and is hard to kick out, as is clear from the fact that the mice feared the white noise after two exposures, but needed far more than two exposures to get over it –- and only under certain conditions. Thus, approaches that make treatment more efficient are high on therapists’ wish lists.

Cain and his colleagues found that both short-term and long-term fear extinction (immediate and one day later) were greater with "temporally massed" presentations of the stimulus, which had six-second intervals between each of the 20 bursts of white noise. The six-second-gap mice stopped showing significant freezing after about 10 presentations of white noise, or 20 minutes’ worth. The mice in the other two groups never really stopped freezing.

Given these important findings, the authors say, "Therapists may wish to incorporate some massing of anxiogenic stimuli into exposure therapy sessions to more quickly reduce the aversiveness of therapy and increase the patient’s willingness to continue with treatment."

"This very strong finding," says co-author Mark Barad, M.D., Ph.D., "is already inspiring a search for a similar pattern of response in human anxiety patients. It’s part of a recent wave of important discoveries about fear extinction, findings that will transform both the practice of behavior therapy and the use of drugs as adjuncts to psychotherapy in the next few years."


Article: Christopher K. Cain, B.A.; Ashley M. Blouin, B.A.; Mark Barad, M.D., Ph.D., "Temporally Massed CS Presentations Generate More Fear Extinction Than Spaced Presentations," Journal of Experimental Psychology: Animal Behavior Processes, Vol. 29, No. 4.

(Full text of the article is available from the APA Public Affairs Office and at http://www.apa.org/releases/conditionalfear_article.pdf)

Mark Barad can be reached by email at mbarad@mednet.ucla.edu or by phone at 310-794-9410. The American Psychological Association (APA), in Washington, DC, is the largest scientific and professional organization representing psychology in the United States and is the world’s largest association of psychologists. APA’s membership includes more than 150,000 researchers, educators, clinicians, consultants and students. Through its divisions in 53 subfields of psychology and affiliations with 60 state, territorial and Canadian provincial associations, APA works to advance psychology as a science, as a profession and as a means of promoting human welfare.

Pam Willenz | EurekAlert!
Further information:
http://www.apa.org/
http://www.apa.org/releases/conditionalfear_article.pdf

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>