Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In childhood leukemia study, aggressive chemotherapy cuts deaths by 37%

02.10.2003


More than a third of children who die from a particularly deadly form of leukemia would be saved if doctors used three existing drugs more aggressively – administering them at much higher doses and over a longer period of time. That is one of several important conclusions drawn from a long-term study, published in the October issue of the Journal of Clinical Oncology, that tested a high-dose drug regimen in 125 young leukemia patients and tracked their outcomes for an average of nine years.



The study, conducted by researchers at nine universities and research hospitals, was led by Barbara L. Asselin, M.D., associate professor of Pediatrics and Oncology at the James P. Wilmot Cancer Center at the University of Rochester. It focused on children with T-cell acute lymphoblastic leukemia, or T-ALL, which accounts for 15 percent of all childhood leukemia cases and is fatal in nearly four in 10 children. While dozens of drugs are routinely used to treat children with the disease, the study sheds new light on the fundamental questions about their use: Which combination of those drugs is most effective? And, what are the highest doses that can be given without subjecting children to additional risks – such as kidney damage and neurological problems – that might be caused by the powerful drugs themselves?

To find out, the researchers drew on earlier studies that had pointed to the effectiveness of three cancer-killing drugs – methotrexate, asparaginase, and doxorubicin. The researchers devised an experimental regimen in which all three would be administered at whopping doses – up to five times higher than usual – and for durations of several months instead of weeks. Between 1981 and 2000, 125 children with T-ALL received the experimental treatment. Afterward, each patient’s progress was followed by the researchers for an average of nine years. More than 25 percent of the patients were followed into their 20s, and some into their early 30s. The researchers were interested not only in whether the children survived the cancer, but also whether the high-dose chemotherapy produced any debilitating long-term effects.


Of the 125 children studied, 93 of them were cured, yielding a survival rate of 75 percent compared to survival rates of between 60 and 65 percent for treatment regimens that used much lower drug doses. Years after treatment, despite the more aggressive chemotherapy, the patients did not experience medical problems beyond those reported in those who had received lower doses of the drugs, with one exception. Patients who had received higher doses of doxorubicin experienced slightly higher rates of cardiomyopathy, a weakening of the heart muscle that can usually be controlled with medication.

"This study tells us, without question, that we should be using these drugs much more aggressively," said Asselin. "Giving these drugs at much higher dosages dramatically improves a child’s chances for survival, and does not pose a significantly greater risk for long-term negative effects. The evidence is so compelling that we are recommending that this new approach become the standard treatment for all children diagnosed with this form of leukemia."

In addition to high-dose chemotherapy, children in the study received low-dose radiation therapy to the brain, where cancerous cells are most likely to survive chemotherapy and cause a relapse of leukemia in the future. Asselin and her colleagues credit the combination of chemotherapy and radiation with preventing relapse among the majority of children in the study, thereby minimizing the greatest threat to their long-term survival. Equally important, the use of low-dose radiation to the brain did not result in a decline in cognitive abilities that had been reported in earlier studies in which children had received higher does of radiation.

"Our goal in this study, and in our careers as researchers, is to find the right balance of treatment for these children," said Asselin. "We want to deliver treatment that is powerful enough to kill their cancer, yet not so toxic that the treatment itself robs them of a normal life afterward. We want them to be healthy – to grow up to play and have fun and do well in school and have a normal quality of life."

The study was funded by the National Institutes of Health and conducted by the Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium. Co-authors of the paper were John M. Goldberg, Lewis B. Silverman, Donna E. Levy, Virginia Kimball Dalton, Richard D. Gelber, Leslie Lehmann, Harvey J. Cohen, and Stephen E. Sallan.

Chris DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>