Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In childhood leukemia study, aggressive chemotherapy cuts deaths by 37%

02.10.2003


More than a third of children who die from a particularly deadly form of leukemia would be saved if doctors used three existing drugs more aggressively – administering them at much higher doses and over a longer period of time. That is one of several important conclusions drawn from a long-term study, published in the October issue of the Journal of Clinical Oncology, that tested a high-dose drug regimen in 125 young leukemia patients and tracked their outcomes for an average of nine years.



The study, conducted by researchers at nine universities and research hospitals, was led by Barbara L. Asselin, M.D., associate professor of Pediatrics and Oncology at the James P. Wilmot Cancer Center at the University of Rochester. It focused on children with T-cell acute lymphoblastic leukemia, or T-ALL, which accounts for 15 percent of all childhood leukemia cases and is fatal in nearly four in 10 children. While dozens of drugs are routinely used to treat children with the disease, the study sheds new light on the fundamental questions about their use: Which combination of those drugs is most effective? And, what are the highest doses that can be given without subjecting children to additional risks – such as kidney damage and neurological problems – that might be caused by the powerful drugs themselves?

To find out, the researchers drew on earlier studies that had pointed to the effectiveness of three cancer-killing drugs – methotrexate, asparaginase, and doxorubicin. The researchers devised an experimental regimen in which all three would be administered at whopping doses – up to five times higher than usual – and for durations of several months instead of weeks. Between 1981 and 2000, 125 children with T-ALL received the experimental treatment. Afterward, each patient’s progress was followed by the researchers for an average of nine years. More than 25 percent of the patients were followed into their 20s, and some into their early 30s. The researchers were interested not only in whether the children survived the cancer, but also whether the high-dose chemotherapy produced any debilitating long-term effects.


Of the 125 children studied, 93 of them were cured, yielding a survival rate of 75 percent compared to survival rates of between 60 and 65 percent for treatment regimens that used much lower drug doses. Years after treatment, despite the more aggressive chemotherapy, the patients did not experience medical problems beyond those reported in those who had received lower doses of the drugs, with one exception. Patients who had received higher doses of doxorubicin experienced slightly higher rates of cardiomyopathy, a weakening of the heart muscle that can usually be controlled with medication.

"This study tells us, without question, that we should be using these drugs much more aggressively," said Asselin. "Giving these drugs at much higher dosages dramatically improves a child’s chances for survival, and does not pose a significantly greater risk for long-term negative effects. The evidence is so compelling that we are recommending that this new approach become the standard treatment for all children diagnosed with this form of leukemia."

In addition to high-dose chemotherapy, children in the study received low-dose radiation therapy to the brain, where cancerous cells are most likely to survive chemotherapy and cause a relapse of leukemia in the future. Asselin and her colleagues credit the combination of chemotherapy and radiation with preventing relapse among the majority of children in the study, thereby minimizing the greatest threat to their long-term survival. Equally important, the use of low-dose radiation to the brain did not result in a decline in cognitive abilities that had been reported in earlier studies in which children had received higher does of radiation.

"Our goal in this study, and in our careers as researchers, is to find the right balance of treatment for these children," said Asselin. "We want to deliver treatment that is powerful enough to kill their cancer, yet not so toxic that the treatment itself robs them of a normal life afterward. We want them to be healthy – to grow up to play and have fun and do well in school and have a normal quality of life."

The study was funded by the National Institutes of Health and conducted by the Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium. Co-authors of the paper were John M. Goldberg, Lewis B. Silverman, Donna E. Levy, Virginia Kimball Dalton, Richard D. Gelber, Leslie Lehmann, Harvey J. Cohen, and Stephen E. Sallan.

Chris DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>