Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In childhood leukemia study, aggressive chemotherapy cuts deaths by 37%

02.10.2003


More than a third of children who die from a particularly deadly form of leukemia would be saved if doctors used three existing drugs more aggressively – administering them at much higher doses and over a longer period of time. That is one of several important conclusions drawn from a long-term study, published in the October issue of the Journal of Clinical Oncology, that tested a high-dose drug regimen in 125 young leukemia patients and tracked their outcomes for an average of nine years.



The study, conducted by researchers at nine universities and research hospitals, was led by Barbara L. Asselin, M.D., associate professor of Pediatrics and Oncology at the James P. Wilmot Cancer Center at the University of Rochester. It focused on children with T-cell acute lymphoblastic leukemia, or T-ALL, which accounts for 15 percent of all childhood leukemia cases and is fatal in nearly four in 10 children. While dozens of drugs are routinely used to treat children with the disease, the study sheds new light on the fundamental questions about their use: Which combination of those drugs is most effective? And, what are the highest doses that can be given without subjecting children to additional risks – such as kidney damage and neurological problems – that might be caused by the powerful drugs themselves?

To find out, the researchers drew on earlier studies that had pointed to the effectiveness of three cancer-killing drugs – methotrexate, asparaginase, and doxorubicin. The researchers devised an experimental regimen in which all three would be administered at whopping doses – up to five times higher than usual – and for durations of several months instead of weeks. Between 1981 and 2000, 125 children with T-ALL received the experimental treatment. Afterward, each patient’s progress was followed by the researchers for an average of nine years. More than 25 percent of the patients were followed into their 20s, and some into their early 30s. The researchers were interested not only in whether the children survived the cancer, but also whether the high-dose chemotherapy produced any debilitating long-term effects.


Of the 125 children studied, 93 of them were cured, yielding a survival rate of 75 percent compared to survival rates of between 60 and 65 percent for treatment regimens that used much lower drug doses. Years after treatment, despite the more aggressive chemotherapy, the patients did not experience medical problems beyond those reported in those who had received lower doses of the drugs, with one exception. Patients who had received higher doses of doxorubicin experienced slightly higher rates of cardiomyopathy, a weakening of the heart muscle that can usually be controlled with medication.

"This study tells us, without question, that we should be using these drugs much more aggressively," said Asselin. "Giving these drugs at much higher dosages dramatically improves a child’s chances for survival, and does not pose a significantly greater risk for long-term negative effects. The evidence is so compelling that we are recommending that this new approach become the standard treatment for all children diagnosed with this form of leukemia."

In addition to high-dose chemotherapy, children in the study received low-dose radiation therapy to the brain, where cancerous cells are most likely to survive chemotherapy and cause a relapse of leukemia in the future. Asselin and her colleagues credit the combination of chemotherapy and radiation with preventing relapse among the majority of children in the study, thereby minimizing the greatest threat to their long-term survival. Equally important, the use of low-dose radiation to the brain did not result in a decline in cognitive abilities that had been reported in earlier studies in which children had received higher does of radiation.

"Our goal in this study, and in our careers as researchers, is to find the right balance of treatment for these children," said Asselin. "We want to deliver treatment that is powerful enough to kill their cancer, yet not so toxic that the treatment itself robs them of a normal life afterward. We want them to be healthy – to grow up to play and have fun and do well in school and have a normal quality of life."

The study was funded by the National Institutes of Health and conducted by the Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium. Co-authors of the paper were John M. Goldberg, Lewis B. Silverman, Donna E. Levy, Virginia Kimball Dalton, Richard D. Gelber, Leslie Lehmann, Harvey J. Cohen, and Stephen E. Sallan.

Chris DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>