Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In childhood leukemia study, aggressive chemotherapy cuts deaths by 37%

02.10.2003


More than a third of children who die from a particularly deadly form of leukemia would be saved if doctors used three existing drugs more aggressively – administering them at much higher doses and over a longer period of time. That is one of several important conclusions drawn from a long-term study, published in the October issue of the Journal of Clinical Oncology, that tested a high-dose drug regimen in 125 young leukemia patients and tracked their outcomes for an average of nine years.



The study, conducted by researchers at nine universities and research hospitals, was led by Barbara L. Asselin, M.D., associate professor of Pediatrics and Oncology at the James P. Wilmot Cancer Center at the University of Rochester. It focused on children with T-cell acute lymphoblastic leukemia, or T-ALL, which accounts for 15 percent of all childhood leukemia cases and is fatal in nearly four in 10 children. While dozens of drugs are routinely used to treat children with the disease, the study sheds new light on the fundamental questions about their use: Which combination of those drugs is most effective? And, what are the highest doses that can be given without subjecting children to additional risks – such as kidney damage and neurological problems – that might be caused by the powerful drugs themselves?

To find out, the researchers drew on earlier studies that had pointed to the effectiveness of three cancer-killing drugs – methotrexate, asparaginase, and doxorubicin. The researchers devised an experimental regimen in which all three would be administered at whopping doses – up to five times higher than usual – and for durations of several months instead of weeks. Between 1981 and 2000, 125 children with T-ALL received the experimental treatment. Afterward, each patient’s progress was followed by the researchers for an average of nine years. More than 25 percent of the patients were followed into their 20s, and some into their early 30s. The researchers were interested not only in whether the children survived the cancer, but also whether the high-dose chemotherapy produced any debilitating long-term effects.


Of the 125 children studied, 93 of them were cured, yielding a survival rate of 75 percent compared to survival rates of between 60 and 65 percent for treatment regimens that used much lower drug doses. Years after treatment, despite the more aggressive chemotherapy, the patients did not experience medical problems beyond those reported in those who had received lower doses of the drugs, with one exception. Patients who had received higher doses of doxorubicin experienced slightly higher rates of cardiomyopathy, a weakening of the heart muscle that can usually be controlled with medication.

"This study tells us, without question, that we should be using these drugs much more aggressively," said Asselin. "Giving these drugs at much higher dosages dramatically improves a child’s chances for survival, and does not pose a significantly greater risk for long-term negative effects. The evidence is so compelling that we are recommending that this new approach become the standard treatment for all children diagnosed with this form of leukemia."

In addition to high-dose chemotherapy, children in the study received low-dose radiation therapy to the brain, where cancerous cells are most likely to survive chemotherapy and cause a relapse of leukemia in the future. Asselin and her colleagues credit the combination of chemotherapy and radiation with preventing relapse among the majority of children in the study, thereby minimizing the greatest threat to their long-term survival. Equally important, the use of low-dose radiation to the brain did not result in a decline in cognitive abilities that had been reported in earlier studies in which children had received higher does of radiation.

"Our goal in this study, and in our careers as researchers, is to find the right balance of treatment for these children," said Asselin. "We want to deliver treatment that is powerful enough to kill their cancer, yet not so toxic that the treatment itself robs them of a normal life afterward. We want them to be healthy – to grow up to play and have fun and do well in school and have a normal quality of life."

The study was funded by the National Institutes of Health and conducted by the Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium. Co-authors of the paper were John M. Goldberg, Lewis B. Silverman, Donna E. Levy, Virginia Kimball Dalton, Richard D. Gelber, Leslie Lehmann, Harvey J. Cohen, and Stephen E. Sallan.

Chris DiFrancesco | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>