Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cell plays key role in body’s excessive repair response to asthma

02.10.2003


Airway scarring can be disrupted by targeting eosinophils



Researchers in London and Montreal report today that they have discovered an important link in the development of the body’s response to allergic asthma.
They have found that one type of white blood cell, an eosinophil, which was known to cause inflammation of lung airways, is also responsible for driving the process which leads to an excessive ’repair response’ by the body.

The response, which is called airway remodelling, causes structural changes in the airway walls and can sometimes lead to permanent scarring and narrowing of the airways, resulting in worse and repeated asthma episodes for sufferers.



The team of scientists from Imperial College London, the Royal Brompton Hospital, London, Guys Hospital, London, McGill University Hospital Centre, Montreal, and St Barts and the Royal London Hospitals Trust, report that the damaging effects of eosinophils in the remodelling process can be significantly reduced by injection of a single specific antibody.

Their research published today in the Journal of Clinical Investigation shows that the monoclonal antibody anti-Interleukin-5 (mepolizumab) both reduces the number of eosinophils in the bronchi and significantly decreases the deposition of special proteins associated with the remodelling process.

The scientists hope their work may lead to the development of ’really effective’ new asthma treatments that work by interfering with the remodelling process.

Leader of the research, Professor Barry Kay, of Imperial College London and the Royal Brompton Hospital, comments: "This research could be of considerable long term benefit in developing more effective treatments in asthma. We already know that eosinophils cause inflammation in the bronchi, but it is the subsequent repair process which may be more important in long term chronic disease.

"In the future, drugs may be available which completely interfere with the process of scarring or re-modelling, and may prove beneficial in the long term treatment of asthma."

Professor Kay adds: "Anti-IL-5 will not be a magic bullet for asthma sufferers, but it could be an important first step in developing really effective drugs which interfere with re-modelling."

Anti-IL5, which removes Interleukin-5, a key molecule in eosinophil development, was given to mild asthmatics as part of a randomised, double blind, placebo controlled protocol.

The 24 patients in the study received three infusions of either the antibody or a placebo dummy injection one month apart, and had a biopsy of the lining of the breathing tubes before and after each infusion. The scientists measured levels of extra cellular matrix (ECM) proteins in the biopsy samples, which indicated the levels of remodelling activity in the airway.


The research was supported by grants from GlaxoSmithKline plc and the Wellcome Trust.

Tony Stephenson | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>