McMaster University researchers race to SARS vaccine development

Researchers at McMaster University have turned a corner in the race to develop a vaccine for severe acute respiratory syndrome (SARS).

A breakthrough has come with the work by professor Jim Mahony who cloned the gene that marks an important nuclear protein of the SARS virus. A research team at McMaster then inserted the nuclear protein gene into an engineered common cold virus, or adenovirus vector, and will shortly test this in animals for the protective effects.

The team, headed by Jack Gauldie, chair of the department of pathology and molecular medicine and director of the Centre for Gene Therapeutics, includes professors Frank Graham, Mary Hitt and Mahony of the department of pathology and molecular medicine, along with professor Ludvik Prevec and technologist Uma Sankar of the department of biology.

Mahony’s discovery was made using DNA sequence data from the SARS Vaccine Initiative (SAVI) of the British Columbia Centre for Disease Control, one of several laboratories the McMaster team is working with to develop a SARS vaccine based on the adenovirus vector that would act as a carrier within the body.

The McMaster group is also working with the SARS Initiative of the Canadian Institutes for Health Research (CIHR) and the National Centres of Excellence in Vaccine and Immunotherapy (CANVAC).

“This is an important step that will allow

Media Contact

Veronica McGuire EurekAlert!

More Information:

http://www.fhs.mcmaster.ca/

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors