Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

McMaster University researchers race to SARS vaccine development

02.10.2003


Researchers at McMaster University have turned a corner in the race to develop a vaccine for severe acute respiratory syndrome (SARS).



A breakthrough has come with the work by professor Jim Mahony who cloned the gene that marks an important nuclear protein of the SARS virus. A research team at McMaster then inserted the nuclear protein gene into an engineered common cold virus, or adenovirus vector, and will shortly test this in animals for the protective effects.

The team, headed by Jack Gauldie, chair of the department of pathology and molecular medicine and director of the Centre for Gene Therapeutics, includes professors Frank Graham, Mary Hitt and Mahony of the department of pathology and molecular medicine, along with professor Ludvik Prevec and technologist Uma Sankar of the department of biology.


Mahony’s discovery was made using DNA sequence data from the SARS Vaccine Initiative (SAVI) of the British Columbia Centre for Disease Control, one of several laboratories the McMaster team is working with to develop a SARS vaccine based on the adenovirus vector that would act as a carrier within the body.

The McMaster group is also working with the SARS Initiative of the Canadian Institutes for Health Research (CIHR) and the National Centres of Excellence in Vaccine and Immunotherapy (CANVAC).

"This is an important step that will allow

Veronica McGuire | EurekAlert!
Further information:
http://www.fhs.mcmaster.ca/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>