Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Injectable’ tissue implant could repair ravages of breast cancer surgery

02.10.2003


Clemson University researchers have developed an injectable tissue implant that could be used to repair damage caused by breast cancer surgeries.



The work is headed by Karen Burg, a Clemson bioengineer just named to MIT’s Technology Review 100 top innovators list. Burg’s work with injectable transplants could one day provide breast-cancer patients a viable reconstructive surgical solution for damage left by lumpectomies and other invasive procedures. The implant, made of donor cells grown onto tiny beads, could reduce scarring, help restore the breast’s natural shape and promote quicker surgical recoveries, said Burg, a Clemson alumna recruited to Clemson four years ago to help develop its tissue engineering program.

"It’s thrilling to be a part of a project that could have such a profound impact on women’s lives," said Burg, an associate bioengineering professor.


The research calls for cells to be grown on a scaffolding of tiny beads, then mixed with a gel and injected into the human body. Gel and beads are absorbed, leaving only the cells, which grow to fill the damaged area.

If the testing goes well, the injectable transplant technology could be ready for use in humans within 10 to 15 years. Burg’s work could provide the first permanent biologically based reconstructive solution for breast-cancer survivors. The need is immense: An estimated 74,000-plus American women undergo breast reconstructions each year to repair damage from invasive procedures such as lumpectomies and mastectomies.

Burg’s research also has potential in bone reconstruction and spinal disc repair. Treatment of patients with tissue and organ failure, which includes bone, accounts for approximately 50 percent of a total health care cost of $400 billion in the United States.

Burg’s research has drawn wide attention from the scientific community.

In September, Technology Review, MIT’s Magazine of Innovation, named Burg to its 2003 list of the world’s 100 Top Young Innovators -- young scientists whose innovative work in technology has a profound impact on today’s world. Recipients hail from biotechnology, computing, energy, medicine, manufacturing, nanotechnology, telecommunications and transportation.

Other national honors for Burg include the National Science Foundation’s Faculty Early Career Award, the Presidential Early Career Award for Scientists and Engineers and, most recently, an invitation to participate in the National Academy of Engineering’s elite Frontiers of Engineering Symposium.


Her laboratory is currently funded by the AO Foundation, the National Institutes of Health, the National Science Foundation and the Department of Defense.

Sandy Dees | EurekAlert!
Further information:
http://www.clemson.edu/

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>