Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Injectable’ tissue implant could repair ravages of breast cancer surgery

02.10.2003


Clemson University researchers have developed an injectable tissue implant that could be used to repair damage caused by breast cancer surgeries.



The work is headed by Karen Burg, a Clemson bioengineer just named to MIT’s Technology Review 100 top innovators list. Burg’s work with injectable transplants could one day provide breast-cancer patients a viable reconstructive surgical solution for damage left by lumpectomies and other invasive procedures. The implant, made of donor cells grown onto tiny beads, could reduce scarring, help restore the breast’s natural shape and promote quicker surgical recoveries, said Burg, a Clemson alumna recruited to Clemson four years ago to help develop its tissue engineering program.

"It’s thrilling to be a part of a project that could have such a profound impact on women’s lives," said Burg, an associate bioengineering professor.


The research calls for cells to be grown on a scaffolding of tiny beads, then mixed with a gel and injected into the human body. Gel and beads are absorbed, leaving only the cells, which grow to fill the damaged area.

If the testing goes well, the injectable transplant technology could be ready for use in humans within 10 to 15 years. Burg’s work could provide the first permanent biologically based reconstructive solution for breast-cancer survivors. The need is immense: An estimated 74,000-plus American women undergo breast reconstructions each year to repair damage from invasive procedures such as lumpectomies and mastectomies.

Burg’s research also has potential in bone reconstruction and spinal disc repair. Treatment of patients with tissue and organ failure, which includes bone, accounts for approximately 50 percent of a total health care cost of $400 billion in the United States.

Burg’s research has drawn wide attention from the scientific community.

In September, Technology Review, MIT’s Magazine of Innovation, named Burg to its 2003 list of the world’s 100 Top Young Innovators -- young scientists whose innovative work in technology has a profound impact on today’s world. Recipients hail from biotechnology, computing, energy, medicine, manufacturing, nanotechnology, telecommunications and transportation.

Other national honors for Burg include the National Science Foundation’s Faculty Early Career Award, the Presidential Early Career Award for Scientists and Engineers and, most recently, an invitation to participate in the National Academy of Engineering’s elite Frontiers of Engineering Symposium.


Her laboratory is currently funded by the AO Foundation, the National Institutes of Health, the National Science Foundation and the Department of Defense.

Sandy Dees | EurekAlert!
Further information:
http://www.clemson.edu/

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>