Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

COX-2 inhibitors and renal damage in obesity-related Type II diabetes

01.10.2003


New findings suggest altered kidney regulation of COX-2 occurs at very early stage in obesity-related diabetic nephropathy



In human diabetic patients, an excessive vasoconstrictive and pro-aggregatory thromboxane (TXA2) renal synthesis, along with a decrease in vasodilatory and anti-aggregatory prostaglandin (PGE2) synthesis, has been found to influence kidney function. Prostaglandins and thromboxane are formed by the enzymatic oxidation of arachidonic acid catalyzed by the cyclooxygenases, COX 1 and COX-2. Recently developed non-steroidal anti-inflammatory drugs (NSAIDS) are targeted to inhibit COX-2 and treat inflammation and arthritic pain. It is not known if the use of NSAIDS may be beneficial for the treatment of kidney disease; however, the upregulation of pro-inflammatory COX-2 and increased production of COX-2 derived metabolites have been implicated in diabetic nephropathy. COX-2 regulation and its association with renal damage are not known in the Obese Zucker rat. A new study tests the hypothesis that altered kidney regulation of COX-2 occurs at a very early stage in the progression of kidney disease.

A New Study


The authors of the study entitled, "Renal Microvascular COX-2 Upregulation is Associated with Kidney Damage in Zucker Obese Rats," are Aparajita Dey, Roger S. Williams, David M. Pollock, David W. Stepp and John D. Imig, all from the Vascular Biology Center, Medical College of Georgia, Augusta, GA. They are presenting their findings during the American Physiological Society (APS) (www.the-aps.org) conference, Understanding Renal and Cardiovascular Function Through Physiological Genomics. The scientific conference is being held October 1-4, 2003 at the Radisson Riverfront Hotel and Convention Center, Augusta, GA.

Background

Obesity, a major nutritional disorder in the United States, leads to the development of Type II diabetes, hypertension, atherosclerosis and chronic renal disease, most of which are interdependent factors. Diabetic nephropathy, a kidney disease that develops in as many as 20 to 40 percent of diabetics, is the leading cause of end stage renal disease (ESRD). In addition to diabetes, obesity, hypertension, hyperlipidemia and other risk factors contribute to the development and progression of kidney disease.

The Obese Zucker rat displays all the metabolic characteristics associated with Type II diabetes and hypertension, and develops extensive renal damage. Obese Zucker rats possess a mutant leptin receptor that explains their uncontrolled appetite and, consequently, results in obesity and its associated characteristics (insulin resistance, hypertension, etc.), although the mechanisms responsible for renal damage in the Obese Zucker rat remain unknown.

Methodology

Obese Zucker rats at 10-12 weeks or 20-21 weeks of age were studied. The rats were housed in separate cages and maintained in a temperature and light-controlled room. Throughout the experimental period, animals had access to standard chow and drinking water. Blood pressure was measured in the conscious state utilizing the radiotelemetry method. Blood glucose levels and body weight were measured periodically.

Protein expression of COX-1 and COX-2 in the kidney cortex, renal microvessels and glomeruli was studied. The levels of 6-keto PGF1a, PGF2a, PGE2 and TXB2 in urine were measured using enzyme immunoassays. Urinary albumin excretion, and indicator of kidney damage, was measured. Kidneys were perfusion fixed in 10% buffered formalin solution and embedded in paraffin for light microscopic evaluation.

Results

The researchers found that:
  • the Obese Zucker rats weighed 432 ± 20 g with a blood glucose of 105 ± 5 mg/dl at 10-12 weeks of age and weighed 679 ± 12 g with a blood glucose of 161 ± 13 mg/dl at 20-21 weeks of age. Blood pressure was slightly elevated in the Obese Zucker rat compared to lean rats and averaged 105 ± 5 mmHg;

  • increased COX-2 protein expression was observed in the kidney cortex and microvessels of the Obese Zucker rats at 10-12 and 20-21 weeks of age. The increase in COX-2 protein expression was associated with increases in TXB2 and decreases in PGE2 urinary excretion rates; and

  • increased urinary albumin was evident in the Obese Zucker rat at 10-12 weeks of age and averaged 7±1 mg/d. At 20-21 weeks of age renal vascular and glomerular damage progressed as assessed histologically and urinary albumin excretion increased to 117 ± 10 mg/d in the Obese Zucker rats.

Conclusions

Obesity is a major risk factor that, along with hyperglycemia and hypertension, contributes to the progression of kidney disease. Previous studies in models of Type I diabetes have suggested that COX-2 may contribute to diabetic nephropathy. In this study researchers found increases in renal COX-2 levels and changes in TXA2 and PGE2 levels in the Obese Zucker rat. The changes in TXA2 and PGE2 are similar to those found in the diabetic patient population.

Interestingly, these changes occurred in the Obese Zucker rat at pre-hyperglycemic and pre-hypertensive stages. Renal damage was minimal at 10-12 weeks of age and progressed rapidly towards kidney failure by 20-21 weeks of age. Therefore, during the development of obesity-related diabetes, alternations in COX-2 derived metabolites could contribute to the renal damage associated with this disease. Taken as a whole, these findings suggest that COX-2 inhibitors may be beneficial for the prevention of renal damage in obesity-related type II diabetes.


The American Physiological Society (APS) is one of the world’s most prestigious organizations for physiological scientists. These researchers specialize in understanding the processes and functions by which animals live, and thus ultimately underlie human health and disease. Founded in 1887 the Bethesda, MD-based Society has more than 11,000 members and publishes 3,800 articles in its 14 peer-reviewed journals each year.

EDITOR’S NOTE: Members of the press are invited to attend the conference and interview the researchers in person or by phone. Please contact Donna Krupa at (703) 527-7357 (office); (703) 967-2751 (cell) or djkrupa1@aol.com (email) for more information.

Meeting Dates: October 1-4, 2003
Radisson Riverfront Hotel and Convention Center, Augusta, GA


Donna Krupa | EurekAlert!
Further information:
http://www.faseb.org/aps/

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>