Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer cells ’’commit suicide’’

30.09.2003


Catalysts which cause cancer cells to ’’commit suicide’’ have been developed in the laboratory by West Country scientists.



The research groups of Dr Claus Jacob, of Exeter University and Dr Nicholas Gutowski at the Royal Devon and Exeter Hospital, with support from the Peninsula Medical School, are investigating the anti-cancer effects of biocatalysts that mimic the activity of the human selenium enzyme, glutathione peroxidase. Their work opens up a very promising new direction for anti-cancer research, but both stress that any potential treatment for sufferers is still many years away.

Dr Jacob, of the University’’s School of Biological and Chemical Sciences, explained: ’’The catalysts work by initiating reactions inside the cancer cell that cause it to destroy itself. In effect, the cancer commits
suicide. One of the benefits of this approach is that the drugs target only the diseased cells.


The research opens up the possibility in the future of an entirely new way of treating cancer that has two advantages over conventional treatments:

1. The catalysts use the particular makeup of cancer cells for their activity and thus do not work in healthy cells. This means they are far more targeted than conventional drugs and could potentially avoid many of the unpleasant side effects associated with chemotherapy and radiotherapy.

2. Catalysts are not consumed during their activity but are recycled over and over again. This means that only minute quantities of biocatalyst are needed to kill cancer cells making them highly efficient.

Dr Jacob said: ’’Cancer therapy has long been based on highly toxic substances that randomly kill healthy and sick cells alike. This new approach might allow us to single out sick cells and kill them with a catalytic efficiency far superior to conventional radiation or chemotherapy. The experimental results obtained so far have been truly impressive but further evaluation and clinical trials are required to develop this.’’

The compounds have been developed and synthesised at the University’’s School of Biological and Chemical Sciences and tested in cancer cells at the Royal Devon and Exeter Hospital. The work has been partially funded by the Leverhulme Trust. An Exeter based company has already shown an interest in the compounds and the new method. The most active compound tested so far is a multifunctional catalyst that integrates a quinone with a chalcogen redox system in one chemically simple molecule.

Claus Jacob | alfa

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>