Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupting two cell mechanisms in combination can suppress aggressive breast cancer in mice

30.09.2003


Targeting angiogenesis alone not effective



Scientists at Memorial Sloan-Kettering Cancer Center and colleagues found that by inhibiting both the proteins responsible for breast cancer growth and those required for the formation of new blood vessels, they could more effectively suppress the growth of extremely aggressive breast tumors in mice. In a surprising finding, the researchers showed that mice harboring a mutation commonly found in human breast cancers developed tumors that were able to grow despite a defect in angiogenesis or new blood vessel formation. However, when these mice were also treated with a chemotherapy drug under development at Memorial Sloan-Kettering that inhibits Hsp90 (a cell survival protein), the chemotherapy was significantly more effective in the mice with abnormal angiogenesis so that tumor growth was completely suppressed. These findings, published in the October 3 issue of the Proceedings of the National Academy of Science, suggest that combining agents that target these two cellular functions should be evaluated for the treatment of advanced breast cancer.

"It was unexpected that the tumors would be able to overcome an inhibition to angiogenesis," said Paola de Candia, Ph.D., a researcher in the Benezra laboratory and first author of the study. "The mice developed large tumors despite the impairment in their ability to form new blood vessels caused by Id deficiency. The tumors were morphologically different with cystic (liquid) centers and a narrow rim of tumor cells. The cells in the rim continued to proliferate and invade tissue. Ultimately, they metastasized, suggesting that inhibiting tumor angiogenesis was not sufficient to suppress tumor growth and progression."


In earlier research, the study’s senior author, Dr. Robert Benezra, and colleagues had shown that mice with two of their four Id proteins genetically altered or "knocked out" had impaired angiogenesis which resulted in an inability to grow capillaries from existing blood vessels. When tumors were transplanted in these Id deficient mice, growth was either slowed or the tumors regressed.

For this study, transgenic mice were used that express the HER2/neu activated oncogene, a mouse model of breast cancer that is much more similar to human disease than transplanted tumors. This genetic modification leads to the development of aggressive breast tumors in 100 per cent of the cases. These mice were then crossed with mice that were Id deficient. The Id deficient, HER2/neu mice with abnormal angiogenesis developed breast tumors at the same rate as those with normal Id genes suggesting that Id deficiency and abnormal angiogenesis could not retard the growth of these HER2/neu dependent breast tumors. While the impairment in new blood vessel formation did not prevent tumor growth, the appearance of the tumors in the Id deficient mice was very different.

The researchers hypothesized that tumors require stress-induced survival pathways in order to maintain the expression of the neu oncogene and to proliferate. Since the Hsp90 chaperone protein is required to activate these pathways, they tested the effects of the Hsp90 inhibitor 17-AAG on the growth of the tumors. The mice were randomly assigned to 17-AAG treatment or control when the first palpable tumor reached 5 mm. The anti-tumor effect of 17-AAG in the Id deficient mice was dramatic with the tumor growth completely inhibited. This drug was only minimally effective in the mice with normal Id function.

"When mice with aggressive breast cancer were treated with 17-AAG, a drug that inhibits the Hsp90 protein, tumor growth was slowed but not completely suppressed," said David Solit, MD, a principle investigator of the 17-AAG trials and a researcher in the laboratory of Dr. Neal Rosen in the Cell Biology Program at Memorial Sloan-Kettering Cancer Center and co-first author of the study. "However, when 17-AAG was administered to Id deficient mice which are unable to form functional new blood vessels, tumor growth was completely inhibited. The enhancement of the drug’s activity when combined with an anti-angiogenesis model suggests that cells with an impaired vasculature may be more dependent on the Hsp90 chaperone function for survival due to their low nutrient and low pH environment. This provides a rationale for combining anti-angiogenic and Hsp 90 inhibitors in clinical trials for patients with advanced breast cancer."

The findings have implications for the design of future studies combining anti-angiogenic and Hsp90 inhibitor drugs in patients. "Because we have been able to create more sophisticated mouse models that over express the oncogenes found in 25 to 30 per cent of human breast cancer, these models are much more reliable in evaluating drugs," said Robert Benezra, Ph.D., senior author of the study, and head of a laboratory in the Cell Biology Program at Memorial Sloan-Kettering Cancer Center. "The mice are more similar to humans with breast cancer so we are hopeful that our results will be able to translate into clinical trials."


This study’s co-authors include Dr. Neal Rosen, Edi Brogi, Adam B. Olshen and Peter Siegel of Memorial Sloan-Kettering Cancer Center; Dr. Dilip Giri, Lifespan Academic Medical Center at Rhode Island Hospital; and Dr. William J. Muller of MOBIX , McMaster University. It was supported by the American Italian Cancer Foundation and the American Society of Clinical Oncology and by grants from the Breast Cancer Research Foundation and the National Institutes of Health.

Memorial Sloan-Kettering Cancer Center is the world’s oldest and largest institution devoted to prevention, patient care, research and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to www.mskcc.org.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org/

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>