Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupting two cell mechanisms in combination can suppress aggressive breast cancer in mice

30.09.2003


Targeting angiogenesis alone not effective



Scientists at Memorial Sloan-Kettering Cancer Center and colleagues found that by inhibiting both the proteins responsible for breast cancer growth and those required for the formation of new blood vessels, they could more effectively suppress the growth of extremely aggressive breast tumors in mice. In a surprising finding, the researchers showed that mice harboring a mutation commonly found in human breast cancers developed tumors that were able to grow despite a defect in angiogenesis or new blood vessel formation. However, when these mice were also treated with a chemotherapy drug under development at Memorial Sloan-Kettering that inhibits Hsp90 (a cell survival protein), the chemotherapy was significantly more effective in the mice with abnormal angiogenesis so that tumor growth was completely suppressed. These findings, published in the October 3 issue of the Proceedings of the National Academy of Science, suggest that combining agents that target these two cellular functions should be evaluated for the treatment of advanced breast cancer.

"It was unexpected that the tumors would be able to overcome an inhibition to angiogenesis," said Paola de Candia, Ph.D., a researcher in the Benezra laboratory and first author of the study. "The mice developed large tumors despite the impairment in their ability to form new blood vessels caused by Id deficiency. The tumors were morphologically different with cystic (liquid) centers and a narrow rim of tumor cells. The cells in the rim continued to proliferate and invade tissue. Ultimately, they metastasized, suggesting that inhibiting tumor angiogenesis was not sufficient to suppress tumor growth and progression."


In earlier research, the study’s senior author, Dr. Robert Benezra, and colleagues had shown that mice with two of their four Id proteins genetically altered or "knocked out" had impaired angiogenesis which resulted in an inability to grow capillaries from existing blood vessels. When tumors were transplanted in these Id deficient mice, growth was either slowed or the tumors regressed.

For this study, transgenic mice were used that express the HER2/neu activated oncogene, a mouse model of breast cancer that is much more similar to human disease than transplanted tumors. This genetic modification leads to the development of aggressive breast tumors in 100 per cent of the cases. These mice were then crossed with mice that were Id deficient. The Id deficient, HER2/neu mice with abnormal angiogenesis developed breast tumors at the same rate as those with normal Id genes suggesting that Id deficiency and abnormal angiogenesis could not retard the growth of these HER2/neu dependent breast tumors. While the impairment in new blood vessel formation did not prevent tumor growth, the appearance of the tumors in the Id deficient mice was very different.

The researchers hypothesized that tumors require stress-induced survival pathways in order to maintain the expression of the neu oncogene and to proliferate. Since the Hsp90 chaperone protein is required to activate these pathways, they tested the effects of the Hsp90 inhibitor 17-AAG on the growth of the tumors. The mice were randomly assigned to 17-AAG treatment or control when the first palpable tumor reached 5 mm. The anti-tumor effect of 17-AAG in the Id deficient mice was dramatic with the tumor growth completely inhibited. This drug was only minimally effective in the mice with normal Id function.

"When mice with aggressive breast cancer were treated with 17-AAG, a drug that inhibits the Hsp90 protein, tumor growth was slowed but not completely suppressed," said David Solit, MD, a principle investigator of the 17-AAG trials and a researcher in the laboratory of Dr. Neal Rosen in the Cell Biology Program at Memorial Sloan-Kettering Cancer Center and co-first author of the study. "However, when 17-AAG was administered to Id deficient mice which are unable to form functional new blood vessels, tumor growth was completely inhibited. The enhancement of the drug’s activity when combined with an anti-angiogenesis model suggests that cells with an impaired vasculature may be more dependent on the Hsp90 chaperone function for survival due to their low nutrient and low pH environment. This provides a rationale for combining anti-angiogenic and Hsp 90 inhibitors in clinical trials for patients with advanced breast cancer."

The findings have implications for the design of future studies combining anti-angiogenic and Hsp90 inhibitor drugs in patients. "Because we have been able to create more sophisticated mouse models that over express the oncogenes found in 25 to 30 per cent of human breast cancer, these models are much more reliable in evaluating drugs," said Robert Benezra, Ph.D., senior author of the study, and head of a laboratory in the Cell Biology Program at Memorial Sloan-Kettering Cancer Center. "The mice are more similar to humans with breast cancer so we are hopeful that our results will be able to translate into clinical trials."


This study’s co-authors include Dr. Neal Rosen, Edi Brogi, Adam B. Olshen and Peter Siegel of Memorial Sloan-Kettering Cancer Center; Dr. Dilip Giri, Lifespan Academic Medical Center at Rhode Island Hospital; and Dr. William J. Muller of MOBIX , McMaster University. It was supported by the American Italian Cancer Foundation and the American Society of Clinical Oncology and by grants from the Breast Cancer Research Foundation and the National Institutes of Health.

Memorial Sloan-Kettering Cancer Center is the world’s oldest and largest institution devoted to prevention, patient care, research and education in cancer. Our scientists and clinicians generate innovative approaches to better understand, diagnose and treat cancer. Our specialists are leaders in biomedical research and in translating the latest research to advance the standard of cancer care worldwide. For more information, go to www.mskcc.org.

Joanne Nicholas | EurekAlert!
Further information:
http://www.mskcc.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>