Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity and blood pressure

30.09.2003


Does the body’s synthesis of certain substances affect the relationship between obesity and blood pressure?



The number of overweight Americans has reached record levels, and obesity now affects almost one in three citizens. Published findings from the 1999-2000 report of the National Health and Nutrition Examination Survey (NHANES), the definitive measure for weight matters in the United States, show that 59 million (31 percent) of adults are obese. One third of adult women are obese (33 percent), a rate slightly above men (28 percent). While there is little difference in obesity rates among men across racial/ethic lines, obesity rates for African-American, Mexican-American and white female are 50, 40 and 30 percent, respectively.

One reason obesity is considered a serious health problem is because it is an important factor for essential hypertension (high blood pressure with no identifiable cause). The exact mechanisms for obesity to cause essential hypertension are not fully understood, but it has been linked to the kidneys. These organs play a key role in regulating blood pressure and other substances which affect renal salt and water excretion, are important modulators of hypertension.


A New Study

One fatty acid -- arachidonic acid – is an endogenous fatty acid containing 20 carbons and 4 double bonds. It can be metabolized by cytochrome P450 (CYP) enzymes into different metabolites ("eicosanoids") in the kidneys. These eicosanoids have been shown to cause constriction or dilation of the blood vessels and affect the ion transport in the nephron, the basic unit of the kidneys. Based on the functions of these eicosanoids, a team of researchers has hypothesized that the synthesis of these substances is affected during obesity and that the substances are involved in the regulation of renal function and blood pressure in obesity.

The researchers are Mong-Heng Wang, Anita Smith, Yiqiang Zhou, Hsin-Hsin Chang, Songbai Lin, and Anne M. Dorrance, all of the Department of Physiology, Medical College of Georgia, Augusta, GA. They will report on the results of their study entitled "Down Regulation of Renal CYP-derived Eicosanoids Synthesis in Fat Rats" during the upcoming
Methodology

Three-week old male Sprague-Dawley rats were split into two groups: high fat (HR) rats, fed a modified chow containing 36% fat and control rats, which were fed normal rat chow.

The studies were carried out on 13-week old rats, and animals were fasted overnight prior to use. Blood pressure was measured after ten weeks of treatment, and only HF rats confirmed to be hypertensive were used in the study. The blood pressure was determined by tail-cuff method and all animals were maintained on a 12-hour light dark cycle and housed two to a cage.

After 10 weeks of treatment, the animals were sacrificed, and renal tissues (cortex, medulla, and papilla) and blood vessels were isolated for the measurements of the synthesis of eicosanoids and expression of CYP enzymes. The measurement of the synthesis of eicosanoids was conducted by HPLC method, and the expression of CYP enzymes was conducted by Western blot analysis. Data are expressed as mean ± SE. All data were analyzed by a one-way analysis of variance or the Student’s t-test for unpaired samples. Statistical significance was set at p<0.05.

Results

After ten weeks of treatment the researchers found that:
  • HF rats showed significantly higher systolic blood pressure, body weight, and fat:body weight ratio;

  • the activity for 20-hydroxyeicosatetraenoic acid (20-HETE, the major eicosanoid) synthesis was decreased by 46% in cortex, 43% in medulla, and 46% in papilla of HF rats;

  • activity for epoxyeicasatrienoic acids (EETs, the minor eicosanoids) was decreased by 46% in cortex, 31% in medulla, and 56% in papilla of HF rats. Interestingly, the changes in the rate of 20-HETE and EETs formation in different renal zones were consistent with the levels of expression of CYP4A and CYP2C23 proteins, respectively. Furthermore, there were no significant changes in the synthesis of these metabolites in the renal microvessels.

Conclusions

These results demonstrate that high fat diet causes the down regulation of CYP4A and CYP2C23 in renal tubules, and these proteins are responsible for renal 20-HETE and EETs formation. Since 20-HETE and EETs are known to inhibit sodium transport in the nephron, the downregulation of the synthesis of these eicosanoids can result in an increase of sodium reabsorption and sodium retention, which is responsible for the elevation of blood pressure.

Significance of the Findings

This study is the first to demonstrate that the synthesis of these eicosanoids and the expression of enzymes that catalyze their formation are altered in the renal tubular sites after the treatment of high fat diet. The change of the synthesis of these eicosanoids is associated with the elevation of blood pressure in HF rats. The study calls attention to the possibility that decreased synthesis of these eicosanoids at tubular sites during the treatment of HF diet impacts on the regulation of renal function and blood pressure.

The study also sets the basis for understanding the change of the synthesis of these eicosanoids in the renal tubular sites of fat rats, and the researchers will continue to pursue the regulatory mechanisms of this change in this animal model. Ultimately, additional knowledge can uncover new therapeutic targets and provide new information for the control and treatment of obesity-induced hypertension.


The American Physiological Society (APS) is one of the world’s most prestigious organizations for physiological scientists. These researchers specialize in understanding the processes and functions by which animals live, and thus ultimately underlie human health and disease. Founded in 1887 the Bethesda, MD-based Society has more than 11,000 members and publishes 3,800 articles in its 14 peer-reviewed journals each year.

Donna Krupa | EurekAlert!
Further information:
http://www.faseb.org/aps/

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>