Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity and blood pressure

30.09.2003


Does the body’s synthesis of certain substances affect the relationship between obesity and blood pressure?



The number of overweight Americans has reached record levels, and obesity now affects almost one in three citizens. Published findings from the 1999-2000 report of the National Health and Nutrition Examination Survey (NHANES), the definitive measure for weight matters in the United States, show that 59 million (31 percent) of adults are obese. One third of adult women are obese (33 percent), a rate slightly above men (28 percent). While there is little difference in obesity rates among men across racial/ethic lines, obesity rates for African-American, Mexican-American and white female are 50, 40 and 30 percent, respectively.

One reason obesity is considered a serious health problem is because it is an important factor for essential hypertension (high blood pressure with no identifiable cause). The exact mechanisms for obesity to cause essential hypertension are not fully understood, but it has been linked to the kidneys. These organs play a key role in regulating blood pressure and other substances which affect renal salt and water excretion, are important modulators of hypertension.


A New Study

One fatty acid -- arachidonic acid – is an endogenous fatty acid containing 20 carbons and 4 double bonds. It can be metabolized by cytochrome P450 (CYP) enzymes into different metabolites ("eicosanoids") in the kidneys. These eicosanoids have been shown to cause constriction or dilation of the blood vessels and affect the ion transport in the nephron, the basic unit of the kidneys. Based on the functions of these eicosanoids, a team of researchers has hypothesized that the synthesis of these substances is affected during obesity and that the substances are involved in the regulation of renal function and blood pressure in obesity.

The researchers are Mong-Heng Wang, Anita Smith, Yiqiang Zhou, Hsin-Hsin Chang, Songbai Lin, and Anne M. Dorrance, all of the Department of Physiology, Medical College of Georgia, Augusta, GA. They will report on the results of their study entitled "Down Regulation of Renal CYP-derived Eicosanoids Synthesis in Fat Rats" during the upcoming
Methodology

Three-week old male Sprague-Dawley rats were split into two groups: high fat (HR) rats, fed a modified chow containing 36% fat and control rats, which were fed normal rat chow.

The studies were carried out on 13-week old rats, and animals were fasted overnight prior to use. Blood pressure was measured after ten weeks of treatment, and only HF rats confirmed to be hypertensive were used in the study. The blood pressure was determined by tail-cuff method and all animals were maintained on a 12-hour light dark cycle and housed two to a cage.

After 10 weeks of treatment, the animals were sacrificed, and renal tissues (cortex, medulla, and papilla) and blood vessels were isolated for the measurements of the synthesis of eicosanoids and expression of CYP enzymes. The measurement of the synthesis of eicosanoids was conducted by HPLC method, and the expression of CYP enzymes was conducted by Western blot analysis. Data are expressed as mean ± SE. All data were analyzed by a one-way analysis of variance or the Student’s t-test for unpaired samples. Statistical significance was set at p<0.05.

Results

After ten weeks of treatment the researchers found that:
  • HF rats showed significantly higher systolic blood pressure, body weight, and fat:body weight ratio;

  • the activity for 20-hydroxyeicosatetraenoic acid (20-HETE, the major eicosanoid) synthesis was decreased by 46% in cortex, 43% in medulla, and 46% in papilla of HF rats;

  • activity for epoxyeicasatrienoic acids (EETs, the minor eicosanoids) was decreased by 46% in cortex, 31% in medulla, and 56% in papilla of HF rats. Interestingly, the changes in the rate of 20-HETE and EETs formation in different renal zones were consistent with the levels of expression of CYP4A and CYP2C23 proteins, respectively. Furthermore, there were no significant changes in the synthesis of these metabolites in the renal microvessels.

Conclusions

These results demonstrate that high fat diet causes the down regulation of CYP4A and CYP2C23 in renal tubules, and these proteins are responsible for renal 20-HETE and EETs formation. Since 20-HETE and EETs are known to inhibit sodium transport in the nephron, the downregulation of the synthesis of these eicosanoids can result in an increase of sodium reabsorption and sodium retention, which is responsible for the elevation of blood pressure.

Significance of the Findings

This study is the first to demonstrate that the synthesis of these eicosanoids and the expression of enzymes that catalyze their formation are altered in the renal tubular sites after the treatment of high fat diet. The change of the synthesis of these eicosanoids is associated with the elevation of blood pressure in HF rats. The study calls attention to the possibility that decreased synthesis of these eicosanoids at tubular sites during the treatment of HF diet impacts on the regulation of renal function and blood pressure.

The study also sets the basis for understanding the change of the synthesis of these eicosanoids in the renal tubular sites of fat rats, and the researchers will continue to pursue the regulatory mechanisms of this change in this animal model. Ultimately, additional knowledge can uncover new therapeutic targets and provide new information for the control and treatment of obesity-induced hypertension.


The American Physiological Society (APS) is one of the world’s most prestigious organizations for physiological scientists. These researchers specialize in understanding the processes and functions by which animals live, and thus ultimately underlie human health and disease. Founded in 1887 the Bethesda, MD-based Society has more than 11,000 members and publishes 3,800 articles in its 14 peer-reviewed journals each year.

Donna Krupa | EurekAlert!
Further information:
http://www.faseb.org/aps/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>