Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify botox receptor

29.09.2003


As doctors tout the toxin found in Botox for its ability to iron out wrinkles, calm muscle spasms and treat migraine headaches, defense agencies condemn it as a weapon that could wipe out large numbers of civilians.



While it is well known that this toxic substance can paralyze the body’s muscles, including the ones that help us breathe, how it infiltrates cells to do this has not been determined.

In a paper published in the Sept. 29 issue of the Journal of Cell Biology, researchers from the University of Wisconsin-Madison answer this long-standing question. They identify a receptor - a route of entry - for the Botox toxin that could lead to improved uses of the substance in the medical field and new methods for neutralizing it in the event of biological warfare.


Botulinum neurotoxin - the toxin found in Botox - is the deadliest of all substances. Produced by different strains of a family of bacteria, it comes in seven forms, four of which are reported to cause the paralyzing and potentially fatal disease of botulism. Currently, the family of bacteria that produces these toxins is listed by the Centers for Disease Control and Prevention as having the greatest potential for mass casualties if used as a biological weapon.

"Botulism is an old disease," says Edwin Chapman, a UW-Madison physiology professor and senior author of the new paper. "We know how the toxins block the release of neurotransmitters from neurons, but we didn’t know how they entered the neurons in the first place."

Whether inhaled or injected, the deadly toxins head straight for neurons, or nerve cells. Via a binding receptor on the surface of these cells, the toxins are brought inside where they block the release of neurotransmitters, chemicals that control muscle contraction and relaxation.

"The way they kill," explains Chapman, "is by inactivating the diaphragm so you no longer can draw a breath."

The receptor that pulls the toxins inside the nerve cells has puzzled scientists. Chapman says researchers have known that gangliosides - a special type of lipid - and proteins work together as a receptor, but no one until now has been able to identify the specific proteins.

Using a cellular model, Chapman, physiology and neuroscience graduate student Min Dong and others identified two proteins that function alongside gangliosides as the receptor for botulinum neurotoxin B - one of the four types deadly to humans. The proteins are synaptotagmin, or syt, I and II, which are found in certain types of neurons.

When one of these two proteins extends itself outside the cell during a process called exocytosis, the toxin latches on and then is internalized during the process of endocytosis.

To confirm that this protein and lipid pair is the actual physiological target of the toxin once it enters the body, the Wisconsin researchers set aside cell cultures and turned to a live mouse model. Working with their colleagues, Michael Goodnough and Eric Johnson in the Department of Food Microbiology and Toxicology, the researchers once again found that the toxin binds to and enters the cell via these two proteins and gangliosides.

"Our study is the first to identify a receptor for one of the botulinum neurotoxins and establish its entry route," says Dong, first author of the paper. "This knowledge will improve both the medical application of the [neurotoxin] and the prevention of a [biological] threat."

Knowledge of this receptor already had led to new research findings that suggest a possible antidote for the toxin.

As described in the paper published September 29, Dong has developed decoys that effectively neutralize one type of the neurotoxin. Specifically, he created fragments of the syt II protein that contain the toxin’s binding site.

In collaboration with Goodnough and Johnson, these fragments, along with gangliosides, were injected into the bloodstream of mice recently exposed to the toxin. The researchers found that the fragments neutralized most of toxic substance; injecting the fragments one minute prior to exposure neutralized 70 to 80 percent of the toxin.

As Chapman explains, "The fragments are a protective agent - a scavenger - that prevents the toxin from reaching its target."

These findings, says Dong, not only confirm the results from the cell culture studies but also provide some of the first evidence that identification of the receptor could play an integral role in developing measures that counteract the bacterial toxin, thereby safeguarding human lives against exposure to the lethal poison.

The fragment composed of the syt II protein is being patented by the Wisconsin Alumni Research Foundation, a non-profit agency that manages intellectual property for UW-Madison.

Currently, Dong and others are working to identify receptors for the other types of botulinum neurotoxin fatal to humans.


CONTACT:
Min Dong, 608-263-4166, mdong@wisc.edu
Edwin Chapman, 608-263-1762, chapman@physiology.wisc.edu
Emily Carlson 608-262-9772, emilycarlson@wisc.edu

Min Dong | idw
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>