Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers identify botox receptor


As doctors tout the toxin found in Botox for its ability to iron out wrinkles, calm muscle spasms and treat migraine headaches, defense agencies condemn it as a weapon that could wipe out large numbers of civilians.

While it is well known that this toxic substance can paralyze the body’s muscles, including the ones that help us breathe, how it infiltrates cells to do this has not been determined.

In a paper published in the Sept. 29 issue of the Journal of Cell Biology, researchers from the University of Wisconsin-Madison answer this long-standing question. They identify a receptor - a route of entry - for the Botox toxin that could lead to improved uses of the substance in the medical field and new methods for neutralizing it in the event of biological warfare.

Botulinum neurotoxin - the toxin found in Botox - is the deadliest of all substances. Produced by different strains of a family of bacteria, it comes in seven forms, four of which are reported to cause the paralyzing and potentially fatal disease of botulism. Currently, the family of bacteria that produces these toxins is listed by the Centers for Disease Control and Prevention as having the greatest potential for mass casualties if used as a biological weapon.

"Botulism is an old disease," says Edwin Chapman, a UW-Madison physiology professor and senior author of the new paper. "We know how the toxins block the release of neurotransmitters from neurons, but we didn’t know how they entered the neurons in the first place."

Whether inhaled or injected, the deadly toxins head straight for neurons, or nerve cells. Via a binding receptor on the surface of these cells, the toxins are brought inside where they block the release of neurotransmitters, chemicals that control muscle contraction and relaxation.

"The way they kill," explains Chapman, "is by inactivating the diaphragm so you no longer can draw a breath."

The receptor that pulls the toxins inside the nerve cells has puzzled scientists. Chapman says researchers have known that gangliosides - a special type of lipid - and proteins work together as a receptor, but no one until now has been able to identify the specific proteins.

Using a cellular model, Chapman, physiology and neuroscience graduate student Min Dong and others identified two proteins that function alongside gangliosides as the receptor for botulinum neurotoxin B - one of the four types deadly to humans. The proteins are synaptotagmin, or syt, I and II, which are found in certain types of neurons.

When one of these two proteins extends itself outside the cell during a process called exocytosis, the toxin latches on and then is internalized during the process of endocytosis.

To confirm that this protein and lipid pair is the actual physiological target of the toxin once it enters the body, the Wisconsin researchers set aside cell cultures and turned to a live mouse model. Working with their colleagues, Michael Goodnough and Eric Johnson in the Department of Food Microbiology and Toxicology, the researchers once again found that the toxin binds to and enters the cell via these two proteins and gangliosides.

"Our study is the first to identify a receptor for one of the botulinum neurotoxins and establish its entry route," says Dong, first author of the paper. "This knowledge will improve both the medical application of the [neurotoxin] and the prevention of a [biological] threat."

Knowledge of this receptor already had led to new research findings that suggest a possible antidote for the toxin.

As described in the paper published September 29, Dong has developed decoys that effectively neutralize one type of the neurotoxin. Specifically, he created fragments of the syt II protein that contain the toxin’s binding site.

In collaboration with Goodnough and Johnson, these fragments, along with gangliosides, were injected into the bloodstream of mice recently exposed to the toxin. The researchers found that the fragments neutralized most of toxic substance; injecting the fragments one minute prior to exposure neutralized 70 to 80 percent of the toxin.

As Chapman explains, "The fragments are a protective agent - a scavenger - that prevents the toxin from reaching its target."

These findings, says Dong, not only confirm the results from the cell culture studies but also provide some of the first evidence that identification of the receptor could play an integral role in developing measures that counteract the bacterial toxin, thereby safeguarding human lives against exposure to the lethal poison.

The fragment composed of the syt II protein is being patented by the Wisconsin Alumni Research Foundation, a non-profit agency that manages intellectual property for UW-Madison.

Currently, Dong and others are working to identify receptors for the other types of botulinum neurotoxin fatal to humans.

Min Dong, 608-263-4166,
Edwin Chapman, 608-263-1762,
Emily Carlson 608-262-9772,

Min Dong | idw
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>