Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making tiny plastic particles to deliver lifesaving medicine

29.09.2003


Many medications such as therapeutic DNA, insulin and human growth hormone must enter the body through painful injections, but a Johns Hopkins researcher is seeking to deliver the same treatment without the sting. Justin Hanes wants to pack the drugs inside microscopic plastic spheres that can be inhaled painlessly. Inside the lungs, the particles should dissolve harmlessly, releasing the medicine at a predetermined pace.



"We’ve made significant progress," said Hanes, an assistant professor in the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering, "especially when you consider all of the challenges we’ve faced in designing and synthesizing these new biomaterials."

For one thing, the polymers used in making such particles must dissolve slowly in the body, releasing the medicine over a prescribed period of hours, days or even weeks. Also, these materials must be strong and flexible, so that the particles do not crack or crumble before delivering their treatment. At the same time, the particles must not stick together, forming clumps that will prevent proper travel through the air passages. Once the particles deposit in the lungs, some therapies will require that they cross the thick mucus lining of air passages prior to releasing their medicinal cargo. Finally, the materials must not trigger a strong immune response, in which the body’s natural defense system attacks a particle before it has delivered its dose.


Hanes and his lab colleagues have overcome many of these hurdles, publishing their research results in peer-reviewed journals. Last year, in an issue of "Biomaterials," Hanes’ team, including associate research scientist Jie Fu and doctoral candidate Jennifer Fiegel, reported that it had synthesized a new type of porous polymer particles capable of releasing drugs in an environment resembling the deep lungs. Importantly, the components used to create these plastic microspheres were materials already FDA-approved for other medical applications, making it more likely they will pose no health hazards to humans in their new polymeric form.

Recent work by Hanes, doctoral candidate Michelle Dawson and associate professor Denis Wirtz has focused on understanding how to alter the design of drug-carrying particles so that they can more efficiently cross the mucus lining in the lungs to reach their cell targets underneath. Reports on this work are expected appear shortly in the "Journal of Biology Chemistry," "Biotechnology Progress" and the "Journal of Aerosol Medicine."

Earlier this year, in "Proceedings of the National Academy of Sciences," Hanes, Wirtz and Junghae Suh, a doctoral candidate, reported that their nanoscopic particles appear to be able to efficiently deliver therapeutic genes by carrying DNA directly to the cell nucleus. Someday, Hanes said, this technique also may prove useful in delivering toxic cancer-fighting drugs only to cells affected by the disease.

For his research accomplishments, Hanes is being recognized in the October issue of MIT’s "Technology Review" as one of the world’s top 100 young innovators. The TR100, chosen by the publication’s editors and an elite panel of judges, consists of 100 individuals under 35 whose innovative work in technology has a profound impact on today’s world. Nominees are recognized for their contributions in transforming the nature of technology in industries such as biotechnology, computing, energy, medicine, manufacturing, nanotechnology, telecommunications and transportation. This marks the second consecutive year that a Johns Hopkins engineering faculty member has appeared on the TR100. Last year, the magazine singled out Jennifer Elisseeff, assistant professor of biomedical engineering, for her research in the field of tissue engineering.

Hanes has focused much of his attention on the lungs because they possess several advantages over other drug delivery routes. When medicine is swallowed, it must pass through the stomach, where it may be degraded by digestive acids. Injections may avoid this problem, but they also are painful and may be difficult for some patients to administer to themselves. Inhalation, however, as smokers and asthmatics know, is generally a quick and painless method of getting a drug into the body. Still, Hanes noted, "the lungs are pretty sacred ground. You have to be very conservative about what you put in there."

As a doctoral student at MIT, Hanes played a leading role in developing porous polymer drug delivery particles coated with a special surfactant native to the lung. The surfactant is designed to fool the body into thinking these particles belong in the lungs, warding off an immune response. In 1999, Hanes and his colleagues received a U.S. patent for this invention; Hanes currently holds eight U.S. patents for advanced drug delivery applications.

At Johns Hopkins, he is building upon this research by synthesizing improved inhalation particles, each about a tenth of the diameter of a human hair. He soon hopes to begin testing their safety and effectiveness in animal models and eventually in human trials. Hanes also is trying to produce even smaller particles that could be used to deliver powerful medications directly into diseased cells, while leaving normal tissue unharmed.

Hanes’ early research has been supported by several grants and awards, including one from the Whitaker Foundation.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.jhu.edu/~cheme/hanes/index.html
http://www.jhu.edu/chbe/index.asp

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>