Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making tiny plastic particles to deliver lifesaving medicine

29.09.2003


Many medications such as therapeutic DNA, insulin and human growth hormone must enter the body through painful injections, but a Johns Hopkins researcher is seeking to deliver the same treatment without the sting. Justin Hanes wants to pack the drugs inside microscopic plastic spheres that can be inhaled painlessly. Inside the lungs, the particles should dissolve harmlessly, releasing the medicine at a predetermined pace.



"We’ve made significant progress," said Hanes, an assistant professor in the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering, "especially when you consider all of the challenges we’ve faced in designing and synthesizing these new biomaterials."

For one thing, the polymers used in making such particles must dissolve slowly in the body, releasing the medicine over a prescribed period of hours, days or even weeks. Also, these materials must be strong and flexible, so that the particles do not crack or crumble before delivering their treatment. At the same time, the particles must not stick together, forming clumps that will prevent proper travel through the air passages. Once the particles deposit in the lungs, some therapies will require that they cross the thick mucus lining of air passages prior to releasing their medicinal cargo. Finally, the materials must not trigger a strong immune response, in which the body’s natural defense system attacks a particle before it has delivered its dose.


Hanes and his lab colleagues have overcome many of these hurdles, publishing their research results in peer-reviewed journals. Last year, in an issue of "Biomaterials," Hanes’ team, including associate research scientist Jie Fu and doctoral candidate Jennifer Fiegel, reported that it had synthesized a new type of porous polymer particles capable of releasing drugs in an environment resembling the deep lungs. Importantly, the components used to create these plastic microspheres were materials already FDA-approved for other medical applications, making it more likely they will pose no health hazards to humans in their new polymeric form.

Recent work by Hanes, doctoral candidate Michelle Dawson and associate professor Denis Wirtz has focused on understanding how to alter the design of drug-carrying particles so that they can more efficiently cross the mucus lining in the lungs to reach their cell targets underneath. Reports on this work are expected appear shortly in the "Journal of Biology Chemistry," "Biotechnology Progress" and the "Journal of Aerosol Medicine."

Earlier this year, in "Proceedings of the National Academy of Sciences," Hanes, Wirtz and Junghae Suh, a doctoral candidate, reported that their nanoscopic particles appear to be able to efficiently deliver therapeutic genes by carrying DNA directly to the cell nucleus. Someday, Hanes said, this technique also may prove useful in delivering toxic cancer-fighting drugs only to cells affected by the disease.

For his research accomplishments, Hanes is being recognized in the October issue of MIT’s "Technology Review" as one of the world’s top 100 young innovators. The TR100, chosen by the publication’s editors and an elite panel of judges, consists of 100 individuals under 35 whose innovative work in technology has a profound impact on today’s world. Nominees are recognized for their contributions in transforming the nature of technology in industries such as biotechnology, computing, energy, medicine, manufacturing, nanotechnology, telecommunications and transportation. This marks the second consecutive year that a Johns Hopkins engineering faculty member has appeared on the TR100. Last year, the magazine singled out Jennifer Elisseeff, assistant professor of biomedical engineering, for her research in the field of tissue engineering.

Hanes has focused much of his attention on the lungs because they possess several advantages over other drug delivery routes. When medicine is swallowed, it must pass through the stomach, where it may be degraded by digestive acids. Injections may avoid this problem, but they also are painful and may be difficult for some patients to administer to themselves. Inhalation, however, as smokers and asthmatics know, is generally a quick and painless method of getting a drug into the body. Still, Hanes noted, "the lungs are pretty sacred ground. You have to be very conservative about what you put in there."

As a doctoral student at MIT, Hanes played a leading role in developing porous polymer drug delivery particles coated with a special surfactant native to the lung. The surfactant is designed to fool the body into thinking these particles belong in the lungs, warding off an immune response. In 1999, Hanes and his colleagues received a U.S. patent for this invention; Hanes currently holds eight U.S. patents for advanced drug delivery applications.

At Johns Hopkins, he is building upon this research by synthesizing improved inhalation particles, each about a tenth of the diameter of a human hair. He soon hopes to begin testing their safety and effectiveness in animal models and eventually in human trials. Hanes also is trying to produce even smaller particles that could be used to deliver powerful medications directly into diseased cells, while leaving normal tissue unharmed.

Hanes’ early research has been supported by several grants and awards, including one from the Whitaker Foundation.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.jhu.edu/~cheme/hanes/index.html
http://www.jhu.edu/chbe/index.asp

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>