Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making tiny plastic particles to deliver lifesaving medicine

29.09.2003


Many medications such as therapeutic DNA, insulin and human growth hormone must enter the body through painful injections, but a Johns Hopkins researcher is seeking to deliver the same treatment without the sting. Justin Hanes wants to pack the drugs inside microscopic plastic spheres that can be inhaled painlessly. Inside the lungs, the particles should dissolve harmlessly, releasing the medicine at a predetermined pace.



"We’ve made significant progress," said Hanes, an assistant professor in the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering, "especially when you consider all of the challenges we’ve faced in designing and synthesizing these new biomaterials."

For one thing, the polymers used in making such particles must dissolve slowly in the body, releasing the medicine over a prescribed period of hours, days or even weeks. Also, these materials must be strong and flexible, so that the particles do not crack or crumble before delivering their treatment. At the same time, the particles must not stick together, forming clumps that will prevent proper travel through the air passages. Once the particles deposit in the lungs, some therapies will require that they cross the thick mucus lining of air passages prior to releasing their medicinal cargo. Finally, the materials must not trigger a strong immune response, in which the body’s natural defense system attacks a particle before it has delivered its dose.


Hanes and his lab colleagues have overcome many of these hurdles, publishing their research results in peer-reviewed journals. Last year, in an issue of "Biomaterials," Hanes’ team, including associate research scientist Jie Fu and doctoral candidate Jennifer Fiegel, reported that it had synthesized a new type of porous polymer particles capable of releasing drugs in an environment resembling the deep lungs. Importantly, the components used to create these plastic microspheres were materials already FDA-approved for other medical applications, making it more likely they will pose no health hazards to humans in their new polymeric form.

Recent work by Hanes, doctoral candidate Michelle Dawson and associate professor Denis Wirtz has focused on understanding how to alter the design of drug-carrying particles so that they can more efficiently cross the mucus lining in the lungs to reach their cell targets underneath. Reports on this work are expected appear shortly in the "Journal of Biology Chemistry," "Biotechnology Progress" and the "Journal of Aerosol Medicine."

Earlier this year, in "Proceedings of the National Academy of Sciences," Hanes, Wirtz and Junghae Suh, a doctoral candidate, reported that their nanoscopic particles appear to be able to efficiently deliver therapeutic genes by carrying DNA directly to the cell nucleus. Someday, Hanes said, this technique also may prove useful in delivering toxic cancer-fighting drugs only to cells affected by the disease.

For his research accomplishments, Hanes is being recognized in the October issue of MIT’s "Technology Review" as one of the world’s top 100 young innovators. The TR100, chosen by the publication’s editors and an elite panel of judges, consists of 100 individuals under 35 whose innovative work in technology has a profound impact on today’s world. Nominees are recognized for their contributions in transforming the nature of technology in industries such as biotechnology, computing, energy, medicine, manufacturing, nanotechnology, telecommunications and transportation. This marks the second consecutive year that a Johns Hopkins engineering faculty member has appeared on the TR100. Last year, the magazine singled out Jennifer Elisseeff, assistant professor of biomedical engineering, for her research in the field of tissue engineering.

Hanes has focused much of his attention on the lungs because they possess several advantages over other drug delivery routes. When medicine is swallowed, it must pass through the stomach, where it may be degraded by digestive acids. Injections may avoid this problem, but they also are painful and may be difficult for some patients to administer to themselves. Inhalation, however, as smokers and asthmatics know, is generally a quick and painless method of getting a drug into the body. Still, Hanes noted, "the lungs are pretty sacred ground. You have to be very conservative about what you put in there."

As a doctoral student at MIT, Hanes played a leading role in developing porous polymer drug delivery particles coated with a special surfactant native to the lung. The surfactant is designed to fool the body into thinking these particles belong in the lungs, warding off an immune response. In 1999, Hanes and his colleagues received a U.S. patent for this invention; Hanes currently holds eight U.S. patents for advanced drug delivery applications.

At Johns Hopkins, he is building upon this research by synthesizing improved inhalation particles, each about a tenth of the diameter of a human hair. He soon hopes to begin testing their safety and effectiveness in animal models and eventually in human trials. Hanes also is trying to produce even smaller particles that could be used to deliver powerful medications directly into diseased cells, while leaving normal tissue unharmed.

Hanes’ early research has been supported by several grants and awards, including one from the Whitaker Foundation.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.jhu.edu/~cheme/hanes/index.html
http://www.jhu.edu/chbe/index.asp

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>