Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making tiny plastic particles to deliver lifesaving medicine

29.09.2003


Many medications such as therapeutic DNA, insulin and human growth hormone must enter the body through painful injections, but a Johns Hopkins researcher is seeking to deliver the same treatment without the sting. Justin Hanes wants to pack the drugs inside microscopic plastic spheres that can be inhaled painlessly. Inside the lungs, the particles should dissolve harmlessly, releasing the medicine at a predetermined pace.



"We’ve made significant progress," said Hanes, an assistant professor in the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering, "especially when you consider all of the challenges we’ve faced in designing and synthesizing these new biomaterials."

For one thing, the polymers used in making such particles must dissolve slowly in the body, releasing the medicine over a prescribed period of hours, days or even weeks. Also, these materials must be strong and flexible, so that the particles do not crack or crumble before delivering their treatment. At the same time, the particles must not stick together, forming clumps that will prevent proper travel through the air passages. Once the particles deposit in the lungs, some therapies will require that they cross the thick mucus lining of air passages prior to releasing their medicinal cargo. Finally, the materials must not trigger a strong immune response, in which the body’s natural defense system attacks a particle before it has delivered its dose.


Hanes and his lab colleagues have overcome many of these hurdles, publishing their research results in peer-reviewed journals. Last year, in an issue of "Biomaterials," Hanes’ team, including associate research scientist Jie Fu and doctoral candidate Jennifer Fiegel, reported that it had synthesized a new type of porous polymer particles capable of releasing drugs in an environment resembling the deep lungs. Importantly, the components used to create these plastic microspheres were materials already FDA-approved for other medical applications, making it more likely they will pose no health hazards to humans in their new polymeric form.

Recent work by Hanes, doctoral candidate Michelle Dawson and associate professor Denis Wirtz has focused on understanding how to alter the design of drug-carrying particles so that they can more efficiently cross the mucus lining in the lungs to reach their cell targets underneath. Reports on this work are expected appear shortly in the "Journal of Biology Chemistry," "Biotechnology Progress" and the "Journal of Aerosol Medicine."

Earlier this year, in "Proceedings of the National Academy of Sciences," Hanes, Wirtz and Junghae Suh, a doctoral candidate, reported that their nanoscopic particles appear to be able to efficiently deliver therapeutic genes by carrying DNA directly to the cell nucleus. Someday, Hanes said, this technique also may prove useful in delivering toxic cancer-fighting drugs only to cells affected by the disease.

For his research accomplishments, Hanes is being recognized in the October issue of MIT’s "Technology Review" as one of the world’s top 100 young innovators. The TR100, chosen by the publication’s editors and an elite panel of judges, consists of 100 individuals under 35 whose innovative work in technology has a profound impact on today’s world. Nominees are recognized for their contributions in transforming the nature of technology in industries such as biotechnology, computing, energy, medicine, manufacturing, nanotechnology, telecommunications and transportation. This marks the second consecutive year that a Johns Hopkins engineering faculty member has appeared on the TR100. Last year, the magazine singled out Jennifer Elisseeff, assistant professor of biomedical engineering, for her research in the field of tissue engineering.

Hanes has focused much of his attention on the lungs because they possess several advantages over other drug delivery routes. When medicine is swallowed, it must pass through the stomach, where it may be degraded by digestive acids. Injections may avoid this problem, but they also are painful and may be difficult for some patients to administer to themselves. Inhalation, however, as smokers and asthmatics know, is generally a quick and painless method of getting a drug into the body. Still, Hanes noted, "the lungs are pretty sacred ground. You have to be very conservative about what you put in there."

As a doctoral student at MIT, Hanes played a leading role in developing porous polymer drug delivery particles coated with a special surfactant native to the lung. The surfactant is designed to fool the body into thinking these particles belong in the lungs, warding off an immune response. In 1999, Hanes and his colleagues received a U.S. patent for this invention; Hanes currently holds eight U.S. patents for advanced drug delivery applications.

At Johns Hopkins, he is building upon this research by synthesizing improved inhalation particles, each about a tenth of the diameter of a human hair. He soon hopes to begin testing their safety and effectiveness in animal models and eventually in human trials. Hanes also is trying to produce even smaller particles that could be used to deliver powerful medications directly into diseased cells, while leaving normal tissue unharmed.

Hanes’ early research has been supported by several grants and awards, including one from the Whitaker Foundation.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.jhu.edu/~cheme/hanes/index.html
http://www.jhu.edu/chbe/index.asp

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>