Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep brain stimulation offers benefits against Parkinson’s

26.09.2003


Deep brain stimulation via electrodes implanted on both sides of the brain markedly improves the motor skills of patients with advanced Parkinson’s Disease, says a new long-term study by researchers at the University of Toronto and Toronto Western Hospital.



"We saw a pronounced decrease in the motor scores associated with Parkinson’s Disease - the tremors, stiffness and slowness - and this benefit was persistent through the course of the long-term followup," says Dr. Anthony Lang, professor in U of T’s division of neurology, the Jack Clark Chair in Parkinson’s Disease Research at the Centre for Research in Neurodegenerative Diseases and director of the Movement Disorders Clinic at Toronto Western Hospital, University Health Network. He and his colleagues used the Unified Parkinson’s Disease Rating Scale (UPDRS) to evaluate both the features of the disease as well as the side-effects of medication. They found motor scores decreased an average of 48 per cent. "This is quite substantial when you compare it to other trials of therapy for Parkinson’s Disease," he says.

In the September issue of the Journal of Neurosurgery, Lang and his colleagues describe the first long-term followup of deep brain stimulation on the subthalamic nucleus (one of the deep nuclei in the brain that sits just above the area known as the midbrain). The subthalamic nucleus is part of the group that co-ordinates automatic movements.


Between 1996 and 2001, Lang and his colleagues followed 25 patients who had electrodes implanted into the region of the subthalamic nucleus on both sides of the brain; the electrodes were wired under the skin to pacemaker-like devices. The frequency and intensity of stimulation was adjusted; patients were monitored and evaluated prior to and after surgery while on and off medication.

When patients were off medication, the UPDRS score - which measures both motor skills and the ability of patients to perform daily living activities - improved after one year, decreasing by 42 per cent. Medication requirements also diminished substantially - dosages were reduced by 38 per cent one year after surgery and 36 per cent at their last evaluation.

Researchers believe the reduction in medication dosage may also partly account for the significant decrease in dyskinesia scores. Dyskinesia - abnormal involuntary movements - are side effects of medications like levodopa where patients exhibit rapid and repetitive motions of the limbs, face and neck or display slow, involuntary movements of the hands and feet.

"One of the important features we found is that not all symptoms of Parkinson’s Disease respond equally to treatment," notes Lang. "Over time, the tremors, stiffness and, to a lesser extent, the slowness continue to respond to surgery and medication. But certain features of the illness such as speech, stability and difficulty with walking benefit less from therapy over the course of long-term followup."

Lang warns that deep brain stimulation will not prevent the disease from worsening, slow its progression or prevent the development of later problems like dementia. However, he says that younger patients like the ones in their study (average age of 57 at the time of surgery) with advanced Parkinson’s Disease did experience sustained improvement in motor function for an average of two years after the procedure as well as a reduced need for medication.

Dr. Andres Lozano, the holder of the R.R. Tasker Chair in Stereotactic and Functional Neurosurgery at U of T and a neurosurgeon at Toronto Western Hospital, co-directed this research with Lang and the other members of their team - Galit Kleiner-Fisman, Jean Saint-Cyr and Elspeth Sime of Toronto Western Hospital and David Fisman of McMaster University. This study was supported by the National Parkinson’s Disease Foundation in the U.S., the Morton and Gloria Shulman Movement Disorders Centre at Toronto Western Hospital, the Jack Clark Chair in Parkinson’s Disease Research at U of T, Medtronics in Minneapolis, Minn., and the Canadian Institutes of Health Research.

Janet Wong | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>