Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New gene for rare inherited paralysis may aid other spinal cord research, too

26.09.2003


Discovery holds immediate promise for diagnosis & treatment of hereditary spastic paraplegia



A single mutation in a single gene is enough to slowly rob people of their ability to walk, scientists from the University of Michigan and the University of Pennsylvania report today.

And while the inherited defect itself is rare, its discovery may help researchers unravel the mysteries of much more common paralyzing conditions, from spinal cord injury to Lou Gehrig’s disease.


In a paper published online today in the American Journal of Human Genetics, and scheduled for the journal’s October issue, the U-M and Penn team describes a new gene, called NIPA1, for a form of hereditary spastic paraplegia, or HSP.

HSP is the name given to a group of disorders affecting about 20,000 Americans. HSP gradually disables its victims as long nerve cells in the spinal cord degenerate and muscles weaken and become spastic. It is often misdiagnosed as other nerve disorders, including multiple sclerosis, cerebral palsy, and amyotrophic lateral sclerosis (also called Lou Gehrig’s disease).

There is no cure for HSP, which is also sometimes called familial spastic paraparesis or Strumpell-Lorain disease. Treatment is limited to physical therapy and exercise to help retain as much muscle function as possible, drug treatment to tame spastic muscle movements, and medication to treat patients’ bladder and bowel control problems, and depression.

"There are direct overlaps between this group of diseases and the nerve degeneration processes in other disorders," says senior author John Fink, M.D., professor of neurology at the University of Michigan Medical School, who has devoted his career to studying and treating HSP and related conditions. "Not only do we hope this discovery will aid HSP patients, but we also believe it will aid in understanding and perhaps stopping the fundamental processes involved in other types of spinal cord degeneration."

The newly described gene mutation on chromosome 15 causes a form of HSP that starts in adulthood, and is passed on in families in a pattern called dominant inheritance. The paper’s co-lead authors are U-M research investigator Shirley Rainier, Ph.D., and Penn postdoctoral research fellow Jing-Hua Chai, M.D., who works in the laboratory of co-author Robert D. Nicholls, D.Phil.

The discovery of the mutation was made with the help of two families affected by the disease: one, of Iraqi origin living in Michigan, and the other of Irish descent, living in Arkansas. Affected and unaffected members of both families allowed their DNA to be studied and compared with DNA samples from people without HSP.

The single-nucleotide mutation alters the structure of a protein that the researchers think resides in nerve cell membranes, a feature that may expedite the development of tests and therapies. In addition to further research on the protein’s exact function, this gene discovery could be used to develop a genetic test to help give HSP patients and their families a firm diagnosis and genetic counseling. A provisional patent application has been filed jointly by the U-M and Penn.

The U-M team has previously found other genes involved in HSP, including a mutation responsible for a form of HSP that develops in early childhood and may resemble familial cerebral palsy.

That discovery, of a gene on chromosome 14 that encodes a protein called atlastin, has already yielded a diagnostic test that can give patients a firm diagnosis to tell them if they have or might some day develop that form of HSP. It can also help couples whose family or medical history suggests they might be at risk of passing a dominant form of HSP on to their children; in dominant HSP families, there is a 50 percent risk that each child will develop the condition.

Developed by Athena Diagnostics, which licensed U-M’s patent on the atlastin gene, the test also screens for a form of HSP found by French scientists, based on a gene for a protein called spastin. Fink has no direct financial interest in Athena Diagnostics.

Fink and Rainier have been looking at chromosome 15 for nearly eight years, after discovering that this region contained a mutant HSP gene. Rainier had narrowed the search to a very small region of chromosome 15, and carefully analyzed genes in this region as potential candidates. Meanwhile, Nicholls and his lab had been searching for genes in the same stretch of DNA.

Sharing of information and materials between the two laboratories resulted in the discovery that NIPA1 mutations cause this particularly severe form of HSP. In their paper, the researchers describe the gene and its encoded protein, as well as clinical analysis of affected subjects. The participation of 105 elderly men and women from a U-M Institute of Gerontology registry enabled this study, allowing the investigators to determine the range of normal variations of the new gene.

The affected members of the Iraqi family living in Michigan and the family from Arkansas are among the nearly 400 HSP patients that Fink and his U-M colleagues see each year. The U-M Neurogenetic Disorders Clinic is the largest clinical and research program for HSP and related disorders in the nation, and one of few that offer comprehensive evaluation, including genetic counseling.

The two families are not related, so the researchers believe that the same mutation occurred spontaneously in both, and likely causes the disease in other families and even in patients who have no family history of the disease.

Although more study is needed to understand exactly how the single-nucleotide mutation leads to a dysfunctional protein and thereby to the disabling symptoms of HSP, Fink and his colleagues feel that they have a good chance of unraveling the mystery. They’re working to develop a mouse model of this form of HSP, which will enable further studies of potential drug- and cell-based therapies.

Until this research yields new treatment options, the U-M and a few other centers offer treatment for HSP’s effects, and genetic testing and counseling. Support groups and a new Spastic Paraplegia Foundation bring patients and researchers together locally and nationally. Fink serves as the SPF’s medical advisor and last year hosted the first International Symposium for HSP.


In addition to Rainier, Chai, Fink and Nicholls, U-M laboratory assistant Debra Tokarz is a co-author. The research was supported by Fink’s Veterans Affairs Merit Review grant, the Geriatric Research, Education and Clinical Center of the VA Ann Arbor Healthcare System, and by Nicholls’ grants from the National Institutes of Health and the Muscular Dystrophy Association. American Journal of Human Genetics, Vol. 73, No. 4, Oct. 2003.

Kara Gavin | EurekAlert!
Further information:
http://www.med.umich.edu/1toolbar/whatsnew.htm
http://www.journals.uchicago.edu/AJHG/journal

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>