Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibroblasts hold clues to fat, scars and inflammation

26.09.2003


Scientists used to think that fibroblasts – the cells that form basic tissue structures – were little more than scaffolding on which more important cells would climb. But University of Rochester Medical Center scientists have discovered that certain fibroblasts have highly specialized duties and play a major role in how scars form, fat accumulates, and harmful inflammation arises in humans.



The research is published in The American Journal of Pathology, October 2003 edition. The work may help doctors understand why some people suffer from unexplained internal scarring around vital organs, which can lead to serious diseases of the eyes, lungs, heart, kidneys or intestines. It may tell us why some accident victims and surgical patients scar easily and take longer to heal. Ultimately, the goal of the research is to pave the way toward drugs that stop unhealthy scars or fatty tissue from developing.

"This is the first clear demonstration that certain kinds of human fibroblasts can develop into scar-type or fat-type cells," says Richard P. Phipps, Ph.D., lead author and professor, Environmental Medicine, Microbiology and Immunology, Oncology and Pediatrics. "In fact, our results show that some fibroblasts may prove to be a useful diagnostic tool by providing clues to the severity of a disease or who might be prone to abnormal wound healing, for example."


For decades scientists generally assumed that fibroblast cells were all alike. Phipps’ group, however, began investigating subsets of fibroblasts, looking at whether they were capable of becoming specialized cells called myofibroblasts or lipofibroblasts.

Myofibroblasts are normally inconspicuous in healthy tissue but become active after injury or trauma. When uncontrolled, myofibroblasts lead to fibrosis of the liver, kidneys, lungs and heart. Lipofibroblasts have no role in scarring, but develop into fat cells and lead to thyroid eye disease and the harmful buildup of fatty tissue in the liver, spleen and bone marrow.

In the laboratory, Phipps’ group conducted experiments on fibroblasts from human uterine and eye tissue. They separated the fibroblasts, and treated the cells with an inducing agent. The scientists investigated how cells could be driven to become either the scar producers (myofibroblasts) or the fat cells (lipofibroblasts).

They discovered the surface markers that identify which fibroblasts have the potential to change and perform specialized duties. In fact, fibroblasts that express Thy-1, a protein involved in growth function, can become myofibroblasts. In contrast, cells with no Thy-1 have the potential to become lipofibroblasts.

Next, Phipps says, the group will more closely study the pathways for this cell transformation. They hope the research might lead to a medication or protein capable of blocking the buildup of fat cells or scar tissue.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>