Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibroblasts hold clues to fat, scars and inflammation

26.09.2003


Scientists used to think that fibroblasts – the cells that form basic tissue structures – were little more than scaffolding on which more important cells would climb. But University of Rochester Medical Center scientists have discovered that certain fibroblasts have highly specialized duties and play a major role in how scars form, fat accumulates, and harmful inflammation arises in humans.



The research is published in The American Journal of Pathology, October 2003 edition. The work may help doctors understand why some people suffer from unexplained internal scarring around vital organs, which can lead to serious diseases of the eyes, lungs, heart, kidneys or intestines. It may tell us why some accident victims and surgical patients scar easily and take longer to heal. Ultimately, the goal of the research is to pave the way toward drugs that stop unhealthy scars or fatty tissue from developing.

"This is the first clear demonstration that certain kinds of human fibroblasts can develop into scar-type or fat-type cells," says Richard P. Phipps, Ph.D., lead author and professor, Environmental Medicine, Microbiology and Immunology, Oncology and Pediatrics. "In fact, our results show that some fibroblasts may prove to be a useful diagnostic tool by providing clues to the severity of a disease or who might be prone to abnormal wound healing, for example."


For decades scientists generally assumed that fibroblast cells were all alike. Phipps’ group, however, began investigating subsets of fibroblasts, looking at whether they were capable of becoming specialized cells called myofibroblasts or lipofibroblasts.

Myofibroblasts are normally inconspicuous in healthy tissue but become active after injury or trauma. When uncontrolled, myofibroblasts lead to fibrosis of the liver, kidneys, lungs and heart. Lipofibroblasts have no role in scarring, but develop into fat cells and lead to thyroid eye disease and the harmful buildup of fatty tissue in the liver, spleen and bone marrow.

In the laboratory, Phipps’ group conducted experiments on fibroblasts from human uterine and eye tissue. They separated the fibroblasts, and treated the cells with an inducing agent. The scientists investigated how cells could be driven to become either the scar producers (myofibroblasts) or the fat cells (lipofibroblasts).

They discovered the surface markers that identify which fibroblasts have the potential to change and perform specialized duties. In fact, fibroblasts that express Thy-1, a protein involved in growth function, can become myofibroblasts. In contrast, cells with no Thy-1 have the potential to become lipofibroblasts.

Next, Phipps says, the group will more closely study the pathways for this cell transformation. They hope the research might lead to a medication or protein capable of blocking the buildup of fat cells or scar tissue.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>