Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibroblasts hold clues to fat, scars and inflammation

26.09.2003


Scientists used to think that fibroblasts – the cells that form basic tissue structures – were little more than scaffolding on which more important cells would climb. But University of Rochester Medical Center scientists have discovered that certain fibroblasts have highly specialized duties and play a major role in how scars form, fat accumulates, and harmful inflammation arises in humans.



The research is published in The American Journal of Pathology, October 2003 edition. The work may help doctors understand why some people suffer from unexplained internal scarring around vital organs, which can lead to serious diseases of the eyes, lungs, heart, kidneys or intestines. It may tell us why some accident victims and surgical patients scar easily and take longer to heal. Ultimately, the goal of the research is to pave the way toward drugs that stop unhealthy scars or fatty tissue from developing.

"This is the first clear demonstration that certain kinds of human fibroblasts can develop into scar-type or fat-type cells," says Richard P. Phipps, Ph.D., lead author and professor, Environmental Medicine, Microbiology and Immunology, Oncology and Pediatrics. "In fact, our results show that some fibroblasts may prove to be a useful diagnostic tool by providing clues to the severity of a disease or who might be prone to abnormal wound healing, for example."


For decades scientists generally assumed that fibroblast cells were all alike. Phipps’ group, however, began investigating subsets of fibroblasts, looking at whether they were capable of becoming specialized cells called myofibroblasts or lipofibroblasts.

Myofibroblasts are normally inconspicuous in healthy tissue but become active after injury or trauma. When uncontrolled, myofibroblasts lead to fibrosis of the liver, kidneys, lungs and heart. Lipofibroblasts have no role in scarring, but develop into fat cells and lead to thyroid eye disease and the harmful buildup of fatty tissue in the liver, spleen and bone marrow.

In the laboratory, Phipps’ group conducted experiments on fibroblasts from human uterine and eye tissue. They separated the fibroblasts, and treated the cells with an inducing agent. The scientists investigated how cells could be driven to become either the scar producers (myofibroblasts) or the fat cells (lipofibroblasts).

They discovered the surface markers that identify which fibroblasts have the potential to change and perform specialized duties. In fact, fibroblasts that express Thy-1, a protein involved in growth function, can become myofibroblasts. In contrast, cells with no Thy-1 have the potential to become lipofibroblasts.

Next, Phipps says, the group will more closely study the pathways for this cell transformation. They hope the research might lead to a medication or protein capable of blocking the buildup of fat cells or scar tissue.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>