Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibroblasts hold clues to fat, scars and inflammation

26.09.2003


Scientists used to think that fibroblasts – the cells that form basic tissue structures – were little more than scaffolding on which more important cells would climb. But University of Rochester Medical Center scientists have discovered that certain fibroblasts have highly specialized duties and play a major role in how scars form, fat accumulates, and harmful inflammation arises in humans.



The research is published in The American Journal of Pathology, October 2003 edition. The work may help doctors understand why some people suffer from unexplained internal scarring around vital organs, which can lead to serious diseases of the eyes, lungs, heart, kidneys or intestines. It may tell us why some accident victims and surgical patients scar easily and take longer to heal. Ultimately, the goal of the research is to pave the way toward drugs that stop unhealthy scars or fatty tissue from developing.

"This is the first clear demonstration that certain kinds of human fibroblasts can develop into scar-type or fat-type cells," says Richard P. Phipps, Ph.D., lead author and professor, Environmental Medicine, Microbiology and Immunology, Oncology and Pediatrics. "In fact, our results show that some fibroblasts may prove to be a useful diagnostic tool by providing clues to the severity of a disease or who might be prone to abnormal wound healing, for example."


For decades scientists generally assumed that fibroblast cells were all alike. Phipps’ group, however, began investigating subsets of fibroblasts, looking at whether they were capable of becoming specialized cells called myofibroblasts or lipofibroblasts.

Myofibroblasts are normally inconspicuous in healthy tissue but become active after injury or trauma. When uncontrolled, myofibroblasts lead to fibrosis of the liver, kidneys, lungs and heart. Lipofibroblasts have no role in scarring, but develop into fat cells and lead to thyroid eye disease and the harmful buildup of fatty tissue in the liver, spleen and bone marrow.

In the laboratory, Phipps’ group conducted experiments on fibroblasts from human uterine and eye tissue. They separated the fibroblasts, and treated the cells with an inducing agent. The scientists investigated how cells could be driven to become either the scar producers (myofibroblasts) or the fat cells (lipofibroblasts).

They discovered the surface markers that identify which fibroblasts have the potential to change and perform specialized duties. In fact, fibroblasts that express Thy-1, a protein involved in growth function, can become myofibroblasts. In contrast, cells with no Thy-1 have the potential to become lipofibroblasts.

Next, Phipps says, the group will more closely study the pathways for this cell transformation. They hope the research might lead to a medication or protein capable of blocking the buildup of fat cells or scar tissue.

Leslie Orr | EurekAlert!
Further information:
http://www.urmc.rochester.edu/

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>