Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify molecular mechanism underlying tumor selectivity of Hsp90 inhibitors

25.09.2003


Malignant cells are dependent on novel activated form of molecular chaperone



A newly identified biochemical difference between malignant cells and normal cells points to a novel molecular target for the development of selective anti-cancer drugs, according to research published today in the journal Nature by scientists from Conforma Therapeutics. Conforma scientists have shown that Heat-Shock Protein 90 (Hsp90), a molecular "chaperone" that maintains the stability and functional shape of many oncogenic signaling proteins, exists in a specific activated, high-affinity form in tumor cells that differs from the "resting" form of Hsp90 found in normal cells. This novel, activated Hsp90 explains the selectivity of Hsp90 inhibitors for tumor cells, including compounds identified by Conforma that bind to tumor-derived Hsp90 with 100-fold greater affinity than to Hsp90 derived from normal cells.

"This discovery explains why Hsp90-directed drugs kill tumor cells at doses that are not toxic to normal tissues," said Lawrence C. Fritz, Ph.D., president and chief executive officer of Conforma Therapeutics and an author of the paper. "We hope to begin testing our ideas and compounds in human clinical trials early next year."


Hsp90 is a molecular chaperone – a protein that maintains the stability and function of many signalling proteins including oncogenic proteins that are upregulated in cancers. Drug molecules can bind Hsp90 and induce the degradation of its oncogenic "client proteins," thereby generating potent anti-tumor activity at well-tolerated doses in animals. However, scientists have often questioned the specificity of Hsp90 as a molecular cancer target since Hsp90 is an abundant protein that is present in all cells. Conforma scientists have resolved this paradox by showing that tumor cells specifically contain Hsp90 complexes in an activated, high-affinity conformation. These data clarify the role of Hsp90 in cancer and support the development of Hsp90 inhibitors as an important new class of anti-tumor agents.

"Our research answers several fundamental questions regarding chaperone proteins and cancer," said Adeela Kamal, Ph.D., Conforma senior research scientist and first author of the Nature article.

The new work indicates that as tumor cells progressively overexpress and accumulate mutant signaling proteins, Hsp90 becomes engaged in active chaperoning and stabilization of these oncoproteins. In this process, bound co-chaperone proteins induce the tumor Hsp90 to adopt a novel high-affinity form. Progressive dependence on the activated, high-affinity chaperone makes Hsp90 an ’Achilles heel’ of tumor cells by distinguishing these malignant cells from normal cells bearing non-activated Hsp90.

"The activation of Hsp90 chaperones has been found in every tumor type we have investigated," said Francis Burrows, Ph.D., Conforma’s director of biological research and senior author of the Nature article. "Accordingly, we are optimistic that Hsp90 antagonists will have broad activity against diverse human cancers."


About Conforma Therapeutics

Conforma Therapeutics, a San Diego-based biopharmaceutical company, is focused on the design and development of novel drugs for the selective treatment of cancer. Conforma is developing drugs that target the cellular HSP90 family of molecular "chaperones" that control protein shape or conformation, including that of key signaling molecules involved in the growth and survival of tumor cells. HSP90-directed drugs selectively induce the degradation of these cancer-promoting proteins, leading to tumor cell death. In addition to cancer, Conforma’s technology also promises to have applications in other areas of medicine, including inflammation, virology, and central nervous disorders. Additional information regarding Conforma is available at www.conformacorp.com.


Contact:

Cindi Helsel
Manager, Administration & Public Relations
Conforma Therapeutics
Direct: 858-795-0116
Main: 858-657-0300
chelsel@conformacorp.com

Joan Kureczka
Kureczka/Martin Associates
415-821-2413
Jkureczka@aol.com

Joan Kureczka | EurekAlert!
Further information:
http://www.conformacorp.com

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>