Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify molecular mechanism underlying tumor selectivity of Hsp90 inhibitors

25.09.2003


Malignant cells are dependent on novel activated form of molecular chaperone



A newly identified biochemical difference between malignant cells and normal cells points to a novel molecular target for the development of selective anti-cancer drugs, according to research published today in the journal Nature by scientists from Conforma Therapeutics. Conforma scientists have shown that Heat-Shock Protein 90 (Hsp90), a molecular "chaperone" that maintains the stability and functional shape of many oncogenic signaling proteins, exists in a specific activated, high-affinity form in tumor cells that differs from the "resting" form of Hsp90 found in normal cells. This novel, activated Hsp90 explains the selectivity of Hsp90 inhibitors for tumor cells, including compounds identified by Conforma that bind to tumor-derived Hsp90 with 100-fold greater affinity than to Hsp90 derived from normal cells.

"This discovery explains why Hsp90-directed drugs kill tumor cells at doses that are not toxic to normal tissues," said Lawrence C. Fritz, Ph.D., president and chief executive officer of Conforma Therapeutics and an author of the paper. "We hope to begin testing our ideas and compounds in human clinical trials early next year."


Hsp90 is a molecular chaperone – a protein that maintains the stability and function of many signalling proteins including oncogenic proteins that are upregulated in cancers. Drug molecules can bind Hsp90 and induce the degradation of its oncogenic "client proteins," thereby generating potent anti-tumor activity at well-tolerated doses in animals. However, scientists have often questioned the specificity of Hsp90 as a molecular cancer target since Hsp90 is an abundant protein that is present in all cells. Conforma scientists have resolved this paradox by showing that tumor cells specifically contain Hsp90 complexes in an activated, high-affinity conformation. These data clarify the role of Hsp90 in cancer and support the development of Hsp90 inhibitors as an important new class of anti-tumor agents.

"Our research answers several fundamental questions regarding chaperone proteins and cancer," said Adeela Kamal, Ph.D., Conforma senior research scientist and first author of the Nature article.

The new work indicates that as tumor cells progressively overexpress and accumulate mutant signaling proteins, Hsp90 becomes engaged in active chaperoning and stabilization of these oncoproteins. In this process, bound co-chaperone proteins induce the tumor Hsp90 to adopt a novel high-affinity form. Progressive dependence on the activated, high-affinity chaperone makes Hsp90 an ’Achilles heel’ of tumor cells by distinguishing these malignant cells from normal cells bearing non-activated Hsp90.

"The activation of Hsp90 chaperones has been found in every tumor type we have investigated," said Francis Burrows, Ph.D., Conforma’s director of biological research and senior author of the Nature article. "Accordingly, we are optimistic that Hsp90 antagonists will have broad activity against diverse human cancers."


About Conforma Therapeutics

Conforma Therapeutics, a San Diego-based biopharmaceutical company, is focused on the design and development of novel drugs for the selective treatment of cancer. Conforma is developing drugs that target the cellular HSP90 family of molecular "chaperones" that control protein shape or conformation, including that of key signaling molecules involved in the growth and survival of tumor cells. HSP90-directed drugs selectively induce the degradation of these cancer-promoting proteins, leading to tumor cell death. In addition to cancer, Conforma’s technology also promises to have applications in other areas of medicine, including inflammation, virology, and central nervous disorders. Additional information regarding Conforma is available at www.conformacorp.com.


Contact:

Cindi Helsel
Manager, Administration & Public Relations
Conforma Therapeutics
Direct: 858-795-0116
Main: 858-657-0300
chelsel@conformacorp.com

Joan Kureczka
Kureczka/Martin Associates
415-821-2413
Jkureczka@aol.com

Joan Kureczka | EurekAlert!
Further information:
http://www.conformacorp.com

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>