Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antigen Targeted In Therapy for Melanoma also Prompts Immune Response in Brain Tumor Cells

25.09.2003


A protein fragment that was previously found in melanomas has now been detected in highly aggressive brain tumors called gliomas that take the lives of about 15,000 Americans each year.

This peptide, which the immune system recognizes as an antigen, or foreign invader, appears to be a target for anti-tumor immune therapy, according to studies conducted by researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute and the National Cancer Institute. It also may be useful as a marker that will enable scientists to monitor immune responses in human clinical trials against cancer cells called glioblastoma multiforme (GBM), often referred to as gliomas.

Institute scientists and neurosurgeons have for several years conducted clinical trials using immunotherapy techniques to battle gliomas, removing brain tumor cells and culturing them with immune system cells called dendritic cells in the lab. When the resulting "vaccine" is injected into the patient’s bloodstream, the dendritic cells recognize the tumor cells as invaders and "present" them to the antigen-fighting T-lymphocytes, triggering an immune response.



"The outlook for patients who suffer from these highly aggressive tumors has historically been extremely poor, and even conventional treatments such as surgery, chemotherapy and radiation therapy have provided almost no benefit," said Keith L. Black, M.D., neurosurgeon and founder and director of the Institute. "Based on the results of our early studies, the immune system appears to have the potential to destroy glioma cells and contribute to longer periods of patient survival. Unfortunately, the immune system is not very effective on its own. Therefore, we are always looking for new ways to target and boost the immune response."

In mouse and human studies of melanoma, tyrosinase-related protein-2 (TRP-2) has proved to be an excellent target for immunotherapies. This study found that the TRP-2 antigen also was expressed at significant levels in glioma cells and that a strong immune response could be triggered against it.

Tests were conducted on the genetic material of established glioma cell lines and on cells of brain tumors removed from patients undergoing treatment at the Maxine Dunitz Neurosurgical Institute. Lab results demonstrated that TRP-2 protein was expressed in primary cultured glioma cells and in fresh tissue.

Additional tests found that certain cytotoxic T lymphocytes - immune system cells that attack invaders - were able to recognize TRP-2 as a target when TRP-2 was expressed in significant levels. The degree of recognition correlated with the level of TRP-2 expression in the genetic material, an important finding because TRP-2 is expressed to lesser degrees - below the recognition and immune activation threshold - in normal brain tissue.

The researchers also were able to generate in the laboratory an immune response using blood cells and dendritic cells from a healthy donor and specially prepared TRP-2-positive glioma cells. The immune cells were able to recognize the TRP-2 positive GBM tumor cell lines, and an increase in TRP-2-specific antigen-killing activity could be seen. The identification of TRP-2 as a brain tumor-associated antigen appears, therefore, to offer not only a new target for immunotherapy, but a way to monitor related immune responses.

An increase in TRP-2-related immune activity also was detected in four patients with malignant brain tumors who were part of a clinical trial at the Maxine Dunitz Neurosurgical Institute. Cytotoxic T lymphocyte activity was significantly increased after three dendritic cell vaccinations, and the patients appeared to have no adverse effects from the vaccinations.

Research scientist Gentao Liu, Ph.D., was the paper’s first author. Other Institute contributors included research scientist Christopher J. Wheeler, Ph.D.; John S. Yu, M.D., co-director of the Comprehensive Brain Tumor Program; Dr. Black, who directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program and holds the Ruth and Lawrence Harvey Chair in Neuroscience; and research scientist Han Ying, Ph.D. Hung T. Khong, M.D., a contributing author from the Surgery Branch of the National Cancer Institute, was involved in previous discoveries of TRP-2 in melanoma.

Funding was provided in part by National Institutes of Health grant NS02232-01 to Dr. Yu.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>