Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Antigen Targeted In Therapy for Melanoma also Prompts Immune Response in Brain Tumor Cells


A protein fragment that was previously found in melanomas has now been detected in highly aggressive brain tumors called gliomas that take the lives of about 15,000 Americans each year.

This peptide, which the immune system recognizes as an antigen, or foreign invader, appears to be a target for anti-tumor immune therapy, according to studies conducted by researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute and the National Cancer Institute. It also may be useful as a marker that will enable scientists to monitor immune responses in human clinical trials against cancer cells called glioblastoma multiforme (GBM), often referred to as gliomas.

Institute scientists and neurosurgeons have for several years conducted clinical trials using immunotherapy techniques to battle gliomas, removing brain tumor cells and culturing them with immune system cells called dendritic cells in the lab. When the resulting "vaccine" is injected into the patient’s bloodstream, the dendritic cells recognize the tumor cells as invaders and "present" them to the antigen-fighting T-lymphocytes, triggering an immune response.

"The outlook for patients who suffer from these highly aggressive tumors has historically been extremely poor, and even conventional treatments such as surgery, chemotherapy and radiation therapy have provided almost no benefit," said Keith L. Black, M.D., neurosurgeon and founder and director of the Institute. "Based on the results of our early studies, the immune system appears to have the potential to destroy glioma cells and contribute to longer periods of patient survival. Unfortunately, the immune system is not very effective on its own. Therefore, we are always looking for new ways to target and boost the immune response."

In mouse and human studies of melanoma, tyrosinase-related protein-2 (TRP-2) has proved to be an excellent target for immunotherapies. This study found that the TRP-2 antigen also was expressed at significant levels in glioma cells and that a strong immune response could be triggered against it.

Tests were conducted on the genetic material of established glioma cell lines and on cells of brain tumors removed from patients undergoing treatment at the Maxine Dunitz Neurosurgical Institute. Lab results demonstrated that TRP-2 protein was expressed in primary cultured glioma cells and in fresh tissue.

Additional tests found that certain cytotoxic T lymphocytes - immune system cells that attack invaders - were able to recognize TRP-2 as a target when TRP-2 was expressed in significant levels. The degree of recognition correlated with the level of TRP-2 expression in the genetic material, an important finding because TRP-2 is expressed to lesser degrees - below the recognition and immune activation threshold - in normal brain tissue.

The researchers also were able to generate in the laboratory an immune response using blood cells and dendritic cells from a healthy donor and specially prepared TRP-2-positive glioma cells. The immune cells were able to recognize the TRP-2 positive GBM tumor cell lines, and an increase in TRP-2-specific antigen-killing activity could be seen. The identification of TRP-2 as a brain tumor-associated antigen appears, therefore, to offer not only a new target for immunotherapy, but a way to monitor related immune responses.

An increase in TRP-2-related immune activity also was detected in four patients with malignant brain tumors who were part of a clinical trial at the Maxine Dunitz Neurosurgical Institute. Cytotoxic T lymphocyte activity was significantly increased after three dendritic cell vaccinations, and the patients appeared to have no adverse effects from the vaccinations.

Research scientist Gentao Liu, Ph.D., was the paper’s first author. Other Institute contributors included research scientist Christopher J. Wheeler, Ph.D.; John S. Yu, M.D., co-director of the Comprehensive Brain Tumor Program; Dr. Black, who directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program and holds the Ruth and Lawrence Harvey Chair in Neuroscience; and research scientist Han Ying, Ph.D. Hung T. Khong, M.D., a contributing author from the Surgery Branch of the National Cancer Institute, was involved in previous discoveries of TRP-2 in melanoma.

Funding was provided in part by National Institutes of Health grant NS02232-01 to Dr. Yu.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>