Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antigen Targeted In Therapy for Melanoma also Prompts Immune Response in Brain Tumor Cells

25.09.2003


A protein fragment that was previously found in melanomas has now been detected in highly aggressive brain tumors called gliomas that take the lives of about 15,000 Americans each year.

This peptide, which the immune system recognizes as an antigen, or foreign invader, appears to be a target for anti-tumor immune therapy, according to studies conducted by researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute and the National Cancer Institute. It also may be useful as a marker that will enable scientists to monitor immune responses in human clinical trials against cancer cells called glioblastoma multiforme (GBM), often referred to as gliomas.

Institute scientists and neurosurgeons have for several years conducted clinical trials using immunotherapy techniques to battle gliomas, removing brain tumor cells and culturing them with immune system cells called dendritic cells in the lab. When the resulting "vaccine" is injected into the patient’s bloodstream, the dendritic cells recognize the tumor cells as invaders and "present" them to the antigen-fighting T-lymphocytes, triggering an immune response.



"The outlook for patients who suffer from these highly aggressive tumors has historically been extremely poor, and even conventional treatments such as surgery, chemotherapy and radiation therapy have provided almost no benefit," said Keith L. Black, M.D., neurosurgeon and founder and director of the Institute. "Based on the results of our early studies, the immune system appears to have the potential to destroy glioma cells and contribute to longer periods of patient survival. Unfortunately, the immune system is not very effective on its own. Therefore, we are always looking for new ways to target and boost the immune response."

In mouse and human studies of melanoma, tyrosinase-related protein-2 (TRP-2) has proved to be an excellent target for immunotherapies. This study found that the TRP-2 antigen also was expressed at significant levels in glioma cells and that a strong immune response could be triggered against it.

Tests were conducted on the genetic material of established glioma cell lines and on cells of brain tumors removed from patients undergoing treatment at the Maxine Dunitz Neurosurgical Institute. Lab results demonstrated that TRP-2 protein was expressed in primary cultured glioma cells and in fresh tissue.

Additional tests found that certain cytotoxic T lymphocytes - immune system cells that attack invaders - were able to recognize TRP-2 as a target when TRP-2 was expressed in significant levels. The degree of recognition correlated with the level of TRP-2 expression in the genetic material, an important finding because TRP-2 is expressed to lesser degrees - below the recognition and immune activation threshold - in normal brain tissue.

The researchers also were able to generate in the laboratory an immune response using blood cells and dendritic cells from a healthy donor and specially prepared TRP-2-positive glioma cells. The immune cells were able to recognize the TRP-2 positive GBM tumor cell lines, and an increase in TRP-2-specific antigen-killing activity could be seen. The identification of TRP-2 as a brain tumor-associated antigen appears, therefore, to offer not only a new target for immunotherapy, but a way to monitor related immune responses.

An increase in TRP-2-related immune activity also was detected in four patients with malignant brain tumors who were part of a clinical trial at the Maxine Dunitz Neurosurgical Institute. Cytotoxic T lymphocyte activity was significantly increased after three dendritic cell vaccinations, and the patients appeared to have no adverse effects from the vaccinations.

Research scientist Gentao Liu, Ph.D., was the paper’s first author. Other Institute contributors included research scientist Christopher J. Wheeler, Ph.D.; John S. Yu, M.D., co-director of the Comprehensive Brain Tumor Program; Dr. Black, who directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program and holds the Ruth and Lawrence Harvey Chair in Neuroscience; and research scientist Han Ying, Ph.D. Hung T. Khong, M.D., a contributing author from the Surgery Branch of the National Cancer Institute, was involved in previous discoveries of TRP-2 in melanoma.

Funding was provided in part by National Institutes of Health grant NS02232-01 to Dr. Yu.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>