Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antigen Targeted In Therapy for Melanoma also Prompts Immune Response in Brain Tumor Cells

25.09.2003


A protein fragment that was previously found in melanomas has now been detected in highly aggressive brain tumors called gliomas that take the lives of about 15,000 Americans each year.

This peptide, which the immune system recognizes as an antigen, or foreign invader, appears to be a target for anti-tumor immune therapy, according to studies conducted by researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute and the National Cancer Institute. It also may be useful as a marker that will enable scientists to monitor immune responses in human clinical trials against cancer cells called glioblastoma multiforme (GBM), often referred to as gliomas.

Institute scientists and neurosurgeons have for several years conducted clinical trials using immunotherapy techniques to battle gliomas, removing brain tumor cells and culturing them with immune system cells called dendritic cells in the lab. When the resulting "vaccine" is injected into the patient’s bloodstream, the dendritic cells recognize the tumor cells as invaders and "present" them to the antigen-fighting T-lymphocytes, triggering an immune response.



"The outlook for patients who suffer from these highly aggressive tumors has historically been extremely poor, and even conventional treatments such as surgery, chemotherapy and radiation therapy have provided almost no benefit," said Keith L. Black, M.D., neurosurgeon and founder and director of the Institute. "Based on the results of our early studies, the immune system appears to have the potential to destroy glioma cells and contribute to longer periods of patient survival. Unfortunately, the immune system is not very effective on its own. Therefore, we are always looking for new ways to target and boost the immune response."

In mouse and human studies of melanoma, tyrosinase-related protein-2 (TRP-2) has proved to be an excellent target for immunotherapies. This study found that the TRP-2 antigen also was expressed at significant levels in glioma cells and that a strong immune response could be triggered against it.

Tests were conducted on the genetic material of established glioma cell lines and on cells of brain tumors removed from patients undergoing treatment at the Maxine Dunitz Neurosurgical Institute. Lab results demonstrated that TRP-2 protein was expressed in primary cultured glioma cells and in fresh tissue.

Additional tests found that certain cytotoxic T lymphocytes - immune system cells that attack invaders - were able to recognize TRP-2 as a target when TRP-2 was expressed in significant levels. The degree of recognition correlated with the level of TRP-2 expression in the genetic material, an important finding because TRP-2 is expressed to lesser degrees - below the recognition and immune activation threshold - in normal brain tissue.

The researchers also were able to generate in the laboratory an immune response using blood cells and dendritic cells from a healthy donor and specially prepared TRP-2-positive glioma cells. The immune cells were able to recognize the TRP-2 positive GBM tumor cell lines, and an increase in TRP-2-specific antigen-killing activity could be seen. The identification of TRP-2 as a brain tumor-associated antigen appears, therefore, to offer not only a new target for immunotherapy, but a way to monitor related immune responses.

An increase in TRP-2-related immune activity also was detected in four patients with malignant brain tumors who were part of a clinical trial at the Maxine Dunitz Neurosurgical Institute. Cytotoxic T lymphocyte activity was significantly increased after three dendritic cell vaccinations, and the patients appeared to have no adverse effects from the vaccinations.

Research scientist Gentao Liu, Ph.D., was the paper’s first author. Other Institute contributors included research scientist Christopher J. Wheeler, Ph.D.; John S. Yu, M.D., co-director of the Comprehensive Brain Tumor Program; Dr. Black, who directs the medical center’s Division of Neurosurgery and the Comprehensive Brain Tumor Program and holds the Ruth and Lawrence Harvey Chair in Neuroscience; and research scientist Han Ying, Ph.D. Hung T. Khong, M.D., a contributing author from the Surgery Branch of the National Cancer Institute, was involved in previous discoveries of TRP-2 in melanoma.

Funding was provided in part by National Institutes of Health grant NS02232-01 to Dr. Yu.

Cedars-Sinai is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthroughs in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Sandy Van | Van Communications

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>