Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormones and drugs that control blood pressure also control malaria infection

19.09.2003


Hormones that regulate cardiovascular function have been discovered to influence malaria infection. As a consequence, beta-blockers, which are safe, inexpensive and commonly prescribed drugs used worldwide to treat high blood pressure, are effective against the deadliest and most drug-resistant strain of malaria parasites.


These findings, by Kasturi Haldar, Jon Lomasney, Travis Harrison and colleagues at the Feinberg School of Medicine at Northwestern University, were reported in an article in the Sept. 19 issue of the journal Science.

Rather than targeting the parasite that causes malaria, an approach that has resulted in mounting resistance to a variety of antimalarial drugs, Haldar and co-researchers focused instead on identifying and blocking the process by which red blood cells allow parasite entry.

Haldar is Charles E. and Emma H. Morrison Professor in Pathology and professor of microbiology-immunology at the Feinberg School.



Malaria is a blood-borne illness transmitted by mosquitoes. Forty percent of the world’s population lives at risk for infection and between 200 and 300 million people are afflicted each year, particularly in underdeveloped and impoverished tropical and sub-Saharan countries.

The most virulent form of the four human malaria parasite species, Plasmodium falciparum, kills over 1 million children each year and is responsible for 25 percent of the infant mortality in Africa, according to latest estimates by the World Health Organization. Recently, however, P. falciparum also has been confirmed as the cause of over 50 cases of malaria among the 625 U.S. troops sent into Liberia. Another strain of malaria, P. vivax, has been confirmed in seven cases in Florida.

World wide there has been a resurgence of malaria in recent years, due mainly to the parasite’s growing resistance to drugs and the mosquito’s acquired resistance to insecticides developed to control the spread of the disease.

Athough malaria infects both liver and blood cells, it is during the “blood stage” of malaria -- when infected red blood cells that are “incubating” thousands of parasites literally explode and release more parasites into the blood stream -- that the symptoms of malaria occur. These symptoms include fever and flu-like symptoms such as chills, headache, muscle aches and fatigue. Immunity is slow to develop, and left untreated, malaria may be fatal, taking its greatest toll in children.

Blocking blood-stage infection by preventing the entry of the P. falciparum parasite into red blood cells provides the most direct way to control infection and quell the symptoms of malaria. But how red blood cells allow the entry of malaria parasites was unknown.

Travis Harrison, who is first author on the article and a research assistant in Haldar’s laboratory, found that G proteins in the red blood cell may be used by the parasite.

G proteins are essentially “go-betweens,” or transducers, that translate signals from hormones, neurotransmitters and other substances and in turn activate such cell processes as gene transcription, motility, secretion and contractility. G proteins have been intensively studied in a wide range of cells, but their functions in oxygen-carrying red blood cells are only beginning to be understood, Haldar said.

Research by Haldar and co-investigators showed that a G protein subunit, called Gs, concentrates around the malaria parasite during infection of the red blood cell.

Using special peptides, compounds similar to proteins, that inhibited the interaction of Gs protein, the researchers were able to show in several laboratory models of malaria that blocking the Gs signal resulted in decreased malaria infection.

Two major Gs-associated receptors, the beta-adrenergic and the adenosine receptors, are known to be present in red blood cells. Stimulating these receptors with a drug called an agonist increased infection of P. falciparum, while beta-blockers, which are antagonists, prevented the P. falciparum parasite from entering red blood cells.

“The use of beta-receptor antagonists, such as those already used to treat high blood pressure, may provide new approaches for treating malaria. Since beta-blockers are directed against a host target, there is low chance of rapid emergence of resistance to these drugs. Moreover, they may be used in combination therapy with existing drugs against parasite targets,” Lomasney and Haldar said.

“This finding offers the opportunity to use well-characterized, inexpensive drugs for a new, much-need application and the impetus for the development of new beta-blockers and other drugs to be tested for effectiveness against malaria,” they said.

Haldar’s co-authors on this study were Travis Harrison, Benjamin U. Samuel, and Thomas Akompong, departments of pathology and of microbiology-immunology, Feinberg School of Medicine; Heidi Hamm, Vanderbilt University, Nashville; Narla Mohandas, New York Blood Center, New York; and Jon W. Lomasney professor of pathology, Feinberg School of Medicine.



Grants from the National Institutes of Health supported this study.

KEYWORDS: malaria, Plasmodium falciparum, G protein, beta-blockers

CONTACT: Elizabeth Crown at (312) 503-8928 or at e-crown@northwestern.edu
Broadcast Media: Tamara Kerrill at (847) 491-4888 or tlk@northwestern.edu

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>