Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic target identified in fight against Rheumatoid Arthritis

17.09.2003


A team of scientists, led by Toshihiro Nakajima at the St Marianna University School of Medicine in Japan, has identified an exciting therapeutic target that may lead to the development of new treatments for Rheumatoid Arthritis (RA).



As published in the latest edition of Genes and Development, the scientists report the discovery of ’synoviolin’, an enzyme that is found in abnormally high levels in diseased joints. High levels of synoviolin are found to cause an overgrowth of joint-destroying synovial cells, a key clinical feature of RA. By reducing levels of synoviolin, scientists hope to halt the proliferation of synovial cells and the devastating progression of RA.

RA is one of the most common joint diseases, affecting approximately 0.5-1.0% of the adult population worldwide. The progressive joint destruction, which mainly targets the small joints of the hands and feet, eventually results in severe movement disability. The clinical features of RA include chronic inflammation of the synovium, or lining of the joint, accompanied by the overgrowth of synovial cells, a condition known as synovial hyperplasia. This mass of synovial cells, or ’pannus’, eventually invades and destroys the cartilage and bone within the joint. Clearly, understanding the factors that regulate synovial hyperplasia are key to designing new therapies to treat RA.


Dr Nakajima and colleagues set out to identify proteins found in synovial cells from rheumatoid joints, with the hope of discovering novel pathogenic factors involved in RA. Using an antibody screening approach, the scientists identified synoviolin as an enzyme that is upregulated in synovial tissues from RA patients. To elucidate the function of synoviolin, the team engineered mice that produced an excess of synoviolin. Significantly, these mice developed spontaneous arthritic joint disease, suggesting that too much synoviolin is indeed an important factor in the development of RA. They also generated mice with half the normal amount of synoviolin. When these mice were treated with a protocol that induces arthritis in normal mice, the ’low-synoviolin’ mice were protected from the arthritis. This result firmly identified synoviolin as a key player in RA pathology.

The scientists went on uncover the cellular mechanism by which altered levels of synoviolin could influence joint pathology. By careful analysis of the engineered mice, they showed that synovial hyperplasia was prevented in the low-synoviolin mice because of increased synovial cell suicide or ’apoptosis’. Apoptosis is a vital protective mechanism against the overproduction of diseased or unwanted cells. On the other hand, synovial cell apoptosis was significantly impaired in mice overexpressing synoviolin, promoting synovial hypoplasia and ultimately, joint disease.

This research demonstrates the significance of synoviolin in regulating synovial hyperplasia and ultimately joint destruction in RA. It offers new insights into the etiology of RA and a novel target for innovative RA therapies. Future research will undoubtedly be focused on designing reagents to reduce the amount or inhibit the activity of synoviolin in diseased joints.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>