Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic target identified in fight against Rheumatoid Arthritis

17.09.2003


A team of scientists, led by Toshihiro Nakajima at the St Marianna University School of Medicine in Japan, has identified an exciting therapeutic target that may lead to the development of new treatments for Rheumatoid Arthritis (RA).



As published in the latest edition of Genes and Development, the scientists report the discovery of ’synoviolin’, an enzyme that is found in abnormally high levels in diseased joints. High levels of synoviolin are found to cause an overgrowth of joint-destroying synovial cells, a key clinical feature of RA. By reducing levels of synoviolin, scientists hope to halt the proliferation of synovial cells and the devastating progression of RA.

RA is one of the most common joint diseases, affecting approximately 0.5-1.0% of the adult population worldwide. The progressive joint destruction, which mainly targets the small joints of the hands and feet, eventually results in severe movement disability. The clinical features of RA include chronic inflammation of the synovium, or lining of the joint, accompanied by the overgrowth of synovial cells, a condition known as synovial hyperplasia. This mass of synovial cells, or ’pannus’, eventually invades and destroys the cartilage and bone within the joint. Clearly, understanding the factors that regulate synovial hyperplasia are key to designing new therapies to treat RA.


Dr Nakajima and colleagues set out to identify proteins found in synovial cells from rheumatoid joints, with the hope of discovering novel pathogenic factors involved in RA. Using an antibody screening approach, the scientists identified synoviolin as an enzyme that is upregulated in synovial tissues from RA patients. To elucidate the function of synoviolin, the team engineered mice that produced an excess of synoviolin. Significantly, these mice developed spontaneous arthritic joint disease, suggesting that too much synoviolin is indeed an important factor in the development of RA. They also generated mice with half the normal amount of synoviolin. When these mice were treated with a protocol that induces arthritis in normal mice, the ’low-synoviolin’ mice were protected from the arthritis. This result firmly identified synoviolin as a key player in RA pathology.

The scientists went on uncover the cellular mechanism by which altered levels of synoviolin could influence joint pathology. By careful analysis of the engineered mice, they showed that synovial hyperplasia was prevented in the low-synoviolin mice because of increased synovial cell suicide or ’apoptosis’. Apoptosis is a vital protective mechanism against the overproduction of diseased or unwanted cells. On the other hand, synovial cell apoptosis was significantly impaired in mice overexpressing synoviolin, promoting synovial hypoplasia and ultimately, joint disease.

This research demonstrates the significance of synoviolin in regulating synovial hyperplasia and ultimately joint destruction in RA. It offers new insights into the etiology of RA and a novel target for innovative RA therapies. Future research will undoubtedly be focused on designing reagents to reduce the amount or inhibit the activity of synoviolin in diseased joints.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

nachricht Disrupted fat breakdown in the brain makes mice dumb
19.05.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>