Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel therapeutic target identified in fight against Rheumatoid Arthritis

17.09.2003


A team of scientists, led by Toshihiro Nakajima at the St Marianna University School of Medicine in Japan, has identified an exciting therapeutic target that may lead to the development of new treatments for Rheumatoid Arthritis (RA).



As published in the latest edition of Genes and Development, the scientists report the discovery of ’synoviolin’, an enzyme that is found in abnormally high levels in diseased joints. High levels of synoviolin are found to cause an overgrowth of joint-destroying synovial cells, a key clinical feature of RA. By reducing levels of synoviolin, scientists hope to halt the proliferation of synovial cells and the devastating progression of RA.

RA is one of the most common joint diseases, affecting approximately 0.5-1.0% of the adult population worldwide. The progressive joint destruction, which mainly targets the small joints of the hands and feet, eventually results in severe movement disability. The clinical features of RA include chronic inflammation of the synovium, or lining of the joint, accompanied by the overgrowth of synovial cells, a condition known as synovial hyperplasia. This mass of synovial cells, or ’pannus’, eventually invades and destroys the cartilage and bone within the joint. Clearly, understanding the factors that regulate synovial hyperplasia are key to designing new therapies to treat RA.


Dr Nakajima and colleagues set out to identify proteins found in synovial cells from rheumatoid joints, with the hope of discovering novel pathogenic factors involved in RA. Using an antibody screening approach, the scientists identified synoviolin as an enzyme that is upregulated in synovial tissues from RA patients. To elucidate the function of synoviolin, the team engineered mice that produced an excess of synoviolin. Significantly, these mice developed spontaneous arthritic joint disease, suggesting that too much synoviolin is indeed an important factor in the development of RA. They also generated mice with half the normal amount of synoviolin. When these mice were treated with a protocol that induces arthritis in normal mice, the ’low-synoviolin’ mice were protected from the arthritis. This result firmly identified synoviolin as a key player in RA pathology.

The scientists went on uncover the cellular mechanism by which altered levels of synoviolin could influence joint pathology. By careful analysis of the engineered mice, they showed that synovial hyperplasia was prevented in the low-synoviolin mice because of increased synovial cell suicide or ’apoptosis’. Apoptosis is a vital protective mechanism against the overproduction of diseased or unwanted cells. On the other hand, synovial cell apoptosis was significantly impaired in mice overexpressing synoviolin, promoting synovial hypoplasia and ultimately, joint disease.

This research demonstrates the significance of synoviolin in regulating synovial hyperplasia and ultimately joint destruction in RA. It offers new insights into the etiology of RA and a novel target for innovative RA therapies. Future research will undoubtedly be focused on designing reagents to reduce the amount or inhibit the activity of synoviolin in diseased joints.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>