Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell lifespan during HIV infection

16.09.2003


Scientists have long held the prevailing view that during HIV infection the depletion of T cells is the result of direct HIV virus–mediated killing. In the September 15 issue of the Journal of Clinical Investigation, Marc Hellerstein and colleagues at the University of California in Berkeley report that it is the chronic activation of the host immune system in response to HIV infection that primarily contributes to T cell loss.



A series of influential studies published in the mid-1990s described the rapid decay of viral load following administration of highly active antiretroviral therapy (HAART), and proposed that HIV infection was associated with a high rate of virus turnover and short lifespan of infected cells. This suggested that HIV infection of susceptible CD4+ T cells led to such high rates of cell death, that compensatory T cell proliferation was inadequate to maintain sufficient T cell numbers and therefore compromised the ability of the immune system to fight the virus.

This view was recently challenged by observations that not only were virus-infected cells dying, but a greater number of uninfected bystander T cells underwent programmed cell death that was not a direct result of HIV infection. Therefore, a new theory has been proposed in which high levels of T cell proliferation reflects a state of chronic immune activation following HIV infection as opposed to simple compensatory proliferation.


Hellerstein and colleagues used a highly innovative technique for measuring the dynamics of T cell turnover in 3 groups of individuals: (i) HIV-infected; (ii) HIV-infected HAART-treated; and (iii) uninfected. They authors found that most of the increased T cell turnover during HIV infection involved a subset of memory T cells – those cells which have encountered prior infection and can rapidly mobilize and clone themselves should the same foreign antigen be encountered during a subsequent infection. The authors concluded that the increased degree of proliferation of this T cell subset was the result of chronic immune activation and not the result of a mechanism striving to compensate for the loss of T cells directly killed by the virus. The increased degree of memory T cell turnover results in a lack of long-lived memory T cells available to assist newly infected cells. The authors did however demonstrate that HAART was able to ameliorate the defect in the production of these long-lived cells.

This identification of this fast-replicating but short-lived subset of T cells aids our understanding of how the body reacts to HIV infection and how HIV wields its destructive power. In an accompanying commentary Guido Silvestri and Mark Feinberg from the Emory Vaccine Center in Atlanta, Georgia, discuss how the dynamics of the T cell population effects the progression of HIV disease. These authors add that the present study "provides important clues as to how HIV infection leads to CD4+ T cell depletion and AIDS". It is still not clear how HIV induces this chronic state of immune activation and why this is so disruptive to the proper overall functioning of the host immune system. Silvestri and Feinberg continue, "some of these questions can be resolved with future application of the innovative and informative labeling techniques pioneered by Hellerstein and colleagues".


###
TITLE: Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection

AUTHOR CONTACT:
Marc Hellerstein
University of California, Berkeley, California, USA.
Phone: (510) 642-0646
Fax: (510) 642-0535
E-mail: march@nature.berkeley.edu

ACCOMPANYING COMMENTARY:
Turnover of lymphocytes and conceptual paradigms in HIV infection

AUTHOR CONTACT:
Mark B. Feinberg
Emory Vaccine Center, Atlanta, Georgia, USA.
Phone: (404) 727-4374
Fax: (404) 727-8199
E-mail: mbf@sph.emory.edu

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org/press/19799.pdf
http://www.the-jci.org/press/17533.pdf
http://www.jci.org/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>