Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potent toxin reveals new antibiotic resistance mechanism

12.09.2003


One of the great frustrations of modern medicine is the creeping ability of pathogenic microbes to develop resistance to the antibiotics we throw at them.



More and more, microbes are able to eliminate, modify and sequester the toxic molecules that make up the arsenal of antibiotics that humans use to treat infection, making once-miraculous drugs increasingly impotent. Now, adding to the mix of devices dangerous microbes deploy to evade destruction by antibiotics, scientists have discovered another way pathogens escape from the most potent drugs: self-sacrifice.

It is the equivalent of the courageous soldier throwing himself on a grenade, says Jon S. Thorson, a University of Wisconsin-Madison professor of pharmacy and the senior author of a paper describing the newfound method of antibiotic resistance published in this week’s (Sept. 12) edition of the journal Science.


"It is a new paradigm for resistance," says Thorson. "It points to the fact that bacteria continue to find new routes to evade these drugs."

The discovery was made by Thorson and colleagues John B. Biggins and Kenolisa C. Onwueme of the Sloan-Kettering Division, Joan and Sanford A. Weill Graduate School of Medical Sciences, Cornell University Cancer Center. Biggins is now at the UW-Madison School of Pharmacy.

The new finding was made using a highly potent anticancer agent known as an enediyne. Enediynes are a class of anti-tumor antibiotics that work by shredding DNA and disrupting the ability of a cell - such as cancer cell or a unicellular organism like a bacterium - to function and reproduce. They rank among the most potent naturally occurring antibiotics, and only a few molecules are required to destroy a cell.

In nature, soil bacteria use enediynes to create a buffer, a very localized environment free from competing microbes, which could overwhelm the slow-growing enediyne-producing bugs. But to survive in the toxic environment it creates, the microbe must have a way to survive its own poisons.

This is especially true, Thorson says, if one of the toxic molecules a bacterium secretes is soaked up by the bacterium itself. To protect itself, the bacterium quickly deploys a protein that intercepts the misdirected enediyne before it finds and destroys the organism’s DNA.

"Instead of cleaving DNA, the enediyne cleaves the protein and thereby inactivates itself," says Thorson. "By detonating its ’warhead’ to cleave the protein instead of the DNA, the cell is preserved. It’s somewhat inefficient, but at least the cell survives."

Over time, many antibiotic-producing microbes have evolved a variety of ways of not succumbing to the toxins they use to keep competitors at bay. But these methods of evading their own chemical warfare agents tend to be shared among bacteria, says Thorson, and are at the root of antibiotic resistance among the pathogenic bacteria that also borrow the defense mechanisms.

Scientists have long known that bacteria can thwart antibiotics by rearranging their chemistry to keep a drug from binding to a cell. What’s more, bacteria have learned how to clean house by quickly pumping antibiotic molecules out of affected cells. They also have acquired the trick of making molecular ’sponges,’ proteins that bind to antibiotics and take the drugs out of the game before they can do their lethal work.

The new mechanism found by Thorson’s group does not bode well for the fight against dangerous and sometimes deadly bacteria.

"Many of our drugs are coming from soil bacteria like these," Thorson says referring to the enediyne-producing bacteria with which he works. "This is the first known example of this kind of self-sacrifice mechanism for resistance. It points to the fact that bacteria continue to find new routes to evade these (antibiotic) molecules."

It would be surprising, Thorson argues, for this new mechanism to be unique to the enediyne-producing bacteria.

"One of the questions we’ve asked ourselves is, ’[Is] this a once-in-a-blue-moon discovery - or will this mechanism be found in other organisms?’ Since nature usually sticks with what works, I would not be surprised if we see this mechanism pop up again."


###
The work conducted by the Wisconsin team was funded in part by the National Institutes of Health.

- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Jon S. Thorson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Cystic fibrosis alters the structure of mucus in airways
28.06.2017 | University of Iowa Health Care

nachricht Mice provide insight into genetics of autism spectrum disorders
28.06.2017 | University of California - Davis

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>