Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potent toxin reveals new antibiotic resistance mechanism

12.09.2003


One of the great frustrations of modern medicine is the creeping ability of pathogenic microbes to develop resistance to the antibiotics we throw at them.



More and more, microbes are able to eliminate, modify and sequester the toxic molecules that make up the arsenal of antibiotics that humans use to treat infection, making once-miraculous drugs increasingly impotent. Now, adding to the mix of devices dangerous microbes deploy to evade destruction by antibiotics, scientists have discovered another way pathogens escape from the most potent drugs: self-sacrifice.

It is the equivalent of the courageous soldier throwing himself on a grenade, says Jon S. Thorson, a University of Wisconsin-Madison professor of pharmacy and the senior author of a paper describing the newfound method of antibiotic resistance published in this week’s (Sept. 12) edition of the journal Science.


"It is a new paradigm for resistance," says Thorson. "It points to the fact that bacteria continue to find new routes to evade these drugs."

The discovery was made by Thorson and colleagues John B. Biggins and Kenolisa C. Onwueme of the Sloan-Kettering Division, Joan and Sanford A. Weill Graduate School of Medical Sciences, Cornell University Cancer Center. Biggins is now at the UW-Madison School of Pharmacy.

The new finding was made using a highly potent anticancer agent known as an enediyne. Enediynes are a class of anti-tumor antibiotics that work by shredding DNA and disrupting the ability of a cell - such as cancer cell or a unicellular organism like a bacterium - to function and reproduce. They rank among the most potent naturally occurring antibiotics, and only a few molecules are required to destroy a cell.

In nature, soil bacteria use enediynes to create a buffer, a very localized environment free from competing microbes, which could overwhelm the slow-growing enediyne-producing bugs. But to survive in the toxic environment it creates, the microbe must have a way to survive its own poisons.

This is especially true, Thorson says, if one of the toxic molecules a bacterium secretes is soaked up by the bacterium itself. To protect itself, the bacterium quickly deploys a protein that intercepts the misdirected enediyne before it finds and destroys the organism’s DNA.

"Instead of cleaving DNA, the enediyne cleaves the protein and thereby inactivates itself," says Thorson. "By detonating its ’warhead’ to cleave the protein instead of the DNA, the cell is preserved. It’s somewhat inefficient, but at least the cell survives."

Over time, many antibiotic-producing microbes have evolved a variety of ways of not succumbing to the toxins they use to keep competitors at bay. But these methods of evading their own chemical warfare agents tend to be shared among bacteria, says Thorson, and are at the root of antibiotic resistance among the pathogenic bacteria that also borrow the defense mechanisms.

Scientists have long known that bacteria can thwart antibiotics by rearranging their chemistry to keep a drug from binding to a cell. What’s more, bacteria have learned how to clean house by quickly pumping antibiotic molecules out of affected cells. They also have acquired the trick of making molecular ’sponges,’ proteins that bind to antibiotics and take the drugs out of the game before they can do their lethal work.

The new mechanism found by Thorson’s group does not bode well for the fight against dangerous and sometimes deadly bacteria.

"Many of our drugs are coming from soil bacteria like these," Thorson says referring to the enediyne-producing bacteria with which he works. "This is the first known example of this kind of self-sacrifice mechanism for resistance. It points to the fact that bacteria continue to find new routes to evade these (antibiotic) molecules."

It would be surprising, Thorson argues, for this new mechanism to be unique to the enediyne-producing bacteria.

"One of the questions we’ve asked ourselves is, ’[Is] this a once-in-a-blue-moon discovery - or will this mechanism be found in other organisms?’ Since nature usually sticks with what works, I would not be surprised if we see this mechanism pop up again."


###
The work conducted by the Wisconsin team was funded in part by the National Institutes of Health.

- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

Jon S. Thorson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>