Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study uses genetic profiling to distinguish types of leprosy

12.09.2003


New approach may provide new way to diagnose, classify and treat diseases



UCLA researchers found a distinction in the gene expression of leprosy that accurately classified two different clinical forms of the disease. This is one of the first studies of its kind where genetic profiling distinguished between disease types, possibly leading to new ways to diagnose and treat all types of diseases.

The new UCLA study, published Sept. 12 in the journal Science, also identified genes belonging to a specific family of cells in the immune system that may provide potent anti-inflammatory or immune suppressant properties. These findings offer more insight into the development of leprosy, as well as new approaches to treat diseases in which the immune system causes tissue damage.


"This study is an important milestone in the new science of using genetic profiling to uncover genes linked to responses that lead to disease progression," said principal investigator Dr. Robert L. Modlin, professor of dermatology and microbiology, immunology and molecular genetics and chief, division of dermatology, David Geffen School of Medicine at UCLA. "The study also provides unanticipated insights into pathogens and targets for therapy."

According to Modlin, the future application of genetic profiling is especially interesting for infectious diseases such as leprosy or even a bioterrorist threat like anthrax.

"With genetic technology, we may be able to quickly distinguish between a common cold and early-stage anthrax, leading to earlier diagnosis and quicker treatment," he noted.

UCLA researchers biopsied 11 leprosy patients’ skin lesions, which is one of the first symptoms of the disease. Using sophisticated genetic technology and statistical methods, researchers compared expression patterns for the 12,000 genes found in the skin lesions. Researchers found that gene expressions differed for the two types of leprosy -- tuberculoid leprosy and lepromatous leprosy.

"If we can predict the clinical course of disease, we can intervene earlier," said Modlin. "This is very important for lepromatous leprosy, a more severe form of the disease that can lead to major nerve damage and disfigurement."

Researchers also found that the major difference between the gene expressions of the two types of leprosy occurred in a specific family of cells in the immune system called LIR or leukocyte immunoglobin-like receptors. Researchers found that a particular cell called LIR-7 was expressed five times more in the lepromatous lesions than in the tuberculoid lesions.

Further tests and genetic comparisons between the two lesion groups found that LIR-7 activation may actually suppress the immune system’s defenses. This may partly explain why some patients suffer from the more severe form of leprosy because these patients’ immune systems may be more compromised.

Researchers then used a tuberculosis bacteria sample to test whether LIR-7 activation would suppress the ability of the immune system to directly combat microbial pathogens. Researchers found that LIR-7 blocked the antimicrobial activity of another cell-surface receptor, called TLR or toll-like receptor. LIR-7 reduced TLR’s immune response activity from 60 percent to 20 percent.

"The immune suppression ability of LIR-7 offers us more insight into the development of infectious diseases like leprosy and also may offer future therapies for autoimmune diseases such as psoriasis or rheumatoid arthritis, where the goal is to turn off or suppress the immune system’s response," said Modlin.

According to Modlin, the next stage of the genetic research will look at leprosy’s various complications, including tissue damage and nerve damage, and try to identify which patients are susceptible to these complications.

Leprosy, one of the world’s oldest known diseases, is a chronic infectious disease. In 2003, more than 630,000 new cases of leprosy affected people worldwide, according to the World Health Organization. Leprosy continues to be an ongoing issue in developing countries.

Leprosy is caused by the bacterium "Mycobacterium leprae," and affects the skin, peripheral nerves, upper respiratory tract and eyes, and can lead to severe disfigurement of the hands, face and feet. It is uncertain how leprosy is spread, and current treatment includes a multi-drug regimen.



The study was funded by the National Institutes of Health and the World Health Organization.

Other researchers include Joshua R. Bieharski, Department of Microbiology, Immunology, and Molecular Genetics and Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Huiying Li, Thomas G. Graeber and David Eisenberg, Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA -- Department of Energy Institute of Genomics and Proteomics, UCLA, Los Angeles; Christoph Meinken, Martin Rollinghoff and Steffen Stenger, Institut fur Klinische Mikrobiologie, Immunologie, und Hygiene, Universitat Erlangen, Erlangen, Germany; Maria-Teresa Ochoa, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Masahiro Yamamura, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan; Anne Burdick, Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Fla.; Euzenir N. Sarno, Leprosy Laboratory Institute Oswaldo Cruz, Rio de Janeiro, Brazil; Manfred Wagner and Thomas H. Rea, Medizinische Kllnik 3, Kllnikum Nurnberg, Nurnberg, Germany; Marco Colonna, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Mo.; Barry R. Bloom, Office of the Dean, Harvard School of Public Health, Boston, Mass.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Health and Medicine:

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>