Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study uses genetic profiling to distinguish types of leprosy

12.09.2003


New approach may provide new way to diagnose, classify and treat diseases



UCLA researchers found a distinction in the gene expression of leprosy that accurately classified two different clinical forms of the disease. This is one of the first studies of its kind where genetic profiling distinguished between disease types, possibly leading to new ways to diagnose and treat all types of diseases.

The new UCLA study, published Sept. 12 in the journal Science, also identified genes belonging to a specific family of cells in the immune system that may provide potent anti-inflammatory or immune suppressant properties. These findings offer more insight into the development of leprosy, as well as new approaches to treat diseases in which the immune system causes tissue damage.


"This study is an important milestone in the new science of using genetic profiling to uncover genes linked to responses that lead to disease progression," said principal investigator Dr. Robert L. Modlin, professor of dermatology and microbiology, immunology and molecular genetics and chief, division of dermatology, David Geffen School of Medicine at UCLA. "The study also provides unanticipated insights into pathogens and targets for therapy."

According to Modlin, the future application of genetic profiling is especially interesting for infectious diseases such as leprosy or even a bioterrorist threat like anthrax.

"With genetic technology, we may be able to quickly distinguish between a common cold and early-stage anthrax, leading to earlier diagnosis and quicker treatment," he noted.

UCLA researchers biopsied 11 leprosy patients’ skin lesions, which is one of the first symptoms of the disease. Using sophisticated genetic technology and statistical methods, researchers compared expression patterns for the 12,000 genes found in the skin lesions. Researchers found that gene expressions differed for the two types of leprosy -- tuberculoid leprosy and lepromatous leprosy.

"If we can predict the clinical course of disease, we can intervene earlier," said Modlin. "This is very important for lepromatous leprosy, a more severe form of the disease that can lead to major nerve damage and disfigurement."

Researchers also found that the major difference between the gene expressions of the two types of leprosy occurred in a specific family of cells in the immune system called LIR or leukocyte immunoglobin-like receptors. Researchers found that a particular cell called LIR-7 was expressed five times more in the lepromatous lesions than in the tuberculoid lesions.

Further tests and genetic comparisons between the two lesion groups found that LIR-7 activation may actually suppress the immune system’s defenses. This may partly explain why some patients suffer from the more severe form of leprosy because these patients’ immune systems may be more compromised.

Researchers then used a tuberculosis bacteria sample to test whether LIR-7 activation would suppress the ability of the immune system to directly combat microbial pathogens. Researchers found that LIR-7 blocked the antimicrobial activity of another cell-surface receptor, called TLR or toll-like receptor. LIR-7 reduced TLR’s immune response activity from 60 percent to 20 percent.

"The immune suppression ability of LIR-7 offers us more insight into the development of infectious diseases like leprosy and also may offer future therapies for autoimmune diseases such as psoriasis or rheumatoid arthritis, where the goal is to turn off or suppress the immune system’s response," said Modlin.

According to Modlin, the next stage of the genetic research will look at leprosy’s various complications, including tissue damage and nerve damage, and try to identify which patients are susceptible to these complications.

Leprosy, one of the world’s oldest known diseases, is a chronic infectious disease. In 2003, more than 630,000 new cases of leprosy affected people worldwide, according to the World Health Organization. Leprosy continues to be an ongoing issue in developing countries.

Leprosy is caused by the bacterium "Mycobacterium leprae," and affects the skin, peripheral nerves, upper respiratory tract and eyes, and can lead to severe disfigurement of the hands, face and feet. It is uncertain how leprosy is spread, and current treatment includes a multi-drug regimen.



The study was funded by the National Institutes of Health and the World Health Organization.

Other researchers include Joshua R. Bieharski, Department of Microbiology, Immunology, and Molecular Genetics and Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Huiying Li, Thomas G. Graeber and David Eisenberg, Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA -- Department of Energy Institute of Genomics and Proteomics, UCLA, Los Angeles; Christoph Meinken, Martin Rollinghoff and Steffen Stenger, Institut fur Klinische Mikrobiologie, Immunologie, und Hygiene, Universitat Erlangen, Erlangen, Germany; Maria-Teresa Ochoa, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Masahiro Yamamura, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan; Anne Burdick, Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Fla.; Euzenir N. Sarno, Leprosy Laboratory Institute Oswaldo Cruz, Rio de Janeiro, Brazil; Manfred Wagner and Thomas H. Rea, Medizinische Kllnik 3, Kllnikum Nurnberg, Nurnberg, Germany; Marco Colonna, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Mo.; Barry R. Bloom, Office of the Dean, Harvard School of Public Health, Boston, Mass.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>