Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study uses genetic profiling to distinguish types of leprosy

12.09.2003


New approach may provide new way to diagnose, classify and treat diseases



UCLA researchers found a distinction in the gene expression of leprosy that accurately classified two different clinical forms of the disease. This is one of the first studies of its kind where genetic profiling distinguished between disease types, possibly leading to new ways to diagnose and treat all types of diseases.

The new UCLA study, published Sept. 12 in the journal Science, also identified genes belonging to a specific family of cells in the immune system that may provide potent anti-inflammatory or immune suppressant properties. These findings offer more insight into the development of leprosy, as well as new approaches to treat diseases in which the immune system causes tissue damage.


"This study is an important milestone in the new science of using genetic profiling to uncover genes linked to responses that lead to disease progression," said principal investigator Dr. Robert L. Modlin, professor of dermatology and microbiology, immunology and molecular genetics and chief, division of dermatology, David Geffen School of Medicine at UCLA. "The study also provides unanticipated insights into pathogens and targets for therapy."

According to Modlin, the future application of genetic profiling is especially interesting for infectious diseases such as leprosy or even a bioterrorist threat like anthrax.

"With genetic technology, we may be able to quickly distinguish between a common cold and early-stage anthrax, leading to earlier diagnosis and quicker treatment," he noted.

UCLA researchers biopsied 11 leprosy patients’ skin lesions, which is one of the first symptoms of the disease. Using sophisticated genetic technology and statistical methods, researchers compared expression patterns for the 12,000 genes found in the skin lesions. Researchers found that gene expressions differed for the two types of leprosy -- tuberculoid leprosy and lepromatous leprosy.

"If we can predict the clinical course of disease, we can intervene earlier," said Modlin. "This is very important for lepromatous leprosy, a more severe form of the disease that can lead to major nerve damage and disfigurement."

Researchers also found that the major difference between the gene expressions of the two types of leprosy occurred in a specific family of cells in the immune system called LIR or leukocyte immunoglobin-like receptors. Researchers found that a particular cell called LIR-7 was expressed five times more in the lepromatous lesions than in the tuberculoid lesions.

Further tests and genetic comparisons between the two lesion groups found that LIR-7 activation may actually suppress the immune system’s defenses. This may partly explain why some patients suffer from the more severe form of leprosy because these patients’ immune systems may be more compromised.

Researchers then used a tuberculosis bacteria sample to test whether LIR-7 activation would suppress the ability of the immune system to directly combat microbial pathogens. Researchers found that LIR-7 blocked the antimicrobial activity of another cell-surface receptor, called TLR or toll-like receptor. LIR-7 reduced TLR’s immune response activity from 60 percent to 20 percent.

"The immune suppression ability of LIR-7 offers us more insight into the development of infectious diseases like leprosy and also may offer future therapies for autoimmune diseases such as psoriasis or rheumatoid arthritis, where the goal is to turn off or suppress the immune system’s response," said Modlin.

According to Modlin, the next stage of the genetic research will look at leprosy’s various complications, including tissue damage and nerve damage, and try to identify which patients are susceptible to these complications.

Leprosy, one of the world’s oldest known diseases, is a chronic infectious disease. In 2003, more than 630,000 new cases of leprosy affected people worldwide, according to the World Health Organization. Leprosy continues to be an ongoing issue in developing countries.

Leprosy is caused by the bacterium "Mycobacterium leprae," and affects the skin, peripheral nerves, upper respiratory tract and eyes, and can lead to severe disfigurement of the hands, face and feet. It is uncertain how leprosy is spread, and current treatment includes a multi-drug regimen.



The study was funded by the National Institutes of Health and the World Health Organization.

Other researchers include Joshua R. Bieharski, Department of Microbiology, Immunology, and Molecular Genetics and Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Huiying Li, Thomas G. Graeber and David Eisenberg, Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA -- Department of Energy Institute of Genomics and Proteomics, UCLA, Los Angeles; Christoph Meinken, Martin Rollinghoff and Steffen Stenger, Institut fur Klinische Mikrobiologie, Immunologie, und Hygiene, Universitat Erlangen, Erlangen, Germany; Maria-Teresa Ochoa, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Masahiro Yamamura, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan; Anne Burdick, Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Fla.; Euzenir N. Sarno, Leprosy Laboratory Institute Oswaldo Cruz, Rio de Janeiro, Brazil; Manfred Wagner and Thomas H. Rea, Medizinische Kllnik 3, Kllnikum Nurnberg, Nurnberg, Germany; Marco Colonna, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Mo.; Barry R. Bloom, Office of the Dean, Harvard School of Public Health, Boston, Mass.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>