Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study uses genetic profiling to distinguish types of leprosy

12.09.2003


New approach may provide new way to diagnose, classify and treat diseases



UCLA researchers found a distinction in the gene expression of leprosy that accurately classified two different clinical forms of the disease. This is one of the first studies of its kind where genetic profiling distinguished between disease types, possibly leading to new ways to diagnose and treat all types of diseases.

The new UCLA study, published Sept. 12 in the journal Science, also identified genes belonging to a specific family of cells in the immune system that may provide potent anti-inflammatory or immune suppressant properties. These findings offer more insight into the development of leprosy, as well as new approaches to treat diseases in which the immune system causes tissue damage.


"This study is an important milestone in the new science of using genetic profiling to uncover genes linked to responses that lead to disease progression," said principal investigator Dr. Robert L. Modlin, professor of dermatology and microbiology, immunology and molecular genetics and chief, division of dermatology, David Geffen School of Medicine at UCLA. "The study also provides unanticipated insights into pathogens and targets for therapy."

According to Modlin, the future application of genetic profiling is especially interesting for infectious diseases such as leprosy or even a bioterrorist threat like anthrax.

"With genetic technology, we may be able to quickly distinguish between a common cold and early-stage anthrax, leading to earlier diagnosis and quicker treatment," he noted.

UCLA researchers biopsied 11 leprosy patients’ skin lesions, which is one of the first symptoms of the disease. Using sophisticated genetic technology and statistical methods, researchers compared expression patterns for the 12,000 genes found in the skin lesions. Researchers found that gene expressions differed for the two types of leprosy -- tuberculoid leprosy and lepromatous leprosy.

"If we can predict the clinical course of disease, we can intervene earlier," said Modlin. "This is very important for lepromatous leprosy, a more severe form of the disease that can lead to major nerve damage and disfigurement."

Researchers also found that the major difference between the gene expressions of the two types of leprosy occurred in a specific family of cells in the immune system called LIR or leukocyte immunoglobin-like receptors. Researchers found that a particular cell called LIR-7 was expressed five times more in the lepromatous lesions than in the tuberculoid lesions.

Further tests and genetic comparisons between the two lesion groups found that LIR-7 activation may actually suppress the immune system’s defenses. This may partly explain why some patients suffer from the more severe form of leprosy because these patients’ immune systems may be more compromised.

Researchers then used a tuberculosis bacteria sample to test whether LIR-7 activation would suppress the ability of the immune system to directly combat microbial pathogens. Researchers found that LIR-7 blocked the antimicrobial activity of another cell-surface receptor, called TLR or toll-like receptor. LIR-7 reduced TLR’s immune response activity from 60 percent to 20 percent.

"The immune suppression ability of LIR-7 offers us more insight into the development of infectious diseases like leprosy and also may offer future therapies for autoimmune diseases such as psoriasis or rheumatoid arthritis, where the goal is to turn off or suppress the immune system’s response," said Modlin.

According to Modlin, the next stage of the genetic research will look at leprosy’s various complications, including tissue damage and nerve damage, and try to identify which patients are susceptible to these complications.

Leprosy, one of the world’s oldest known diseases, is a chronic infectious disease. In 2003, more than 630,000 new cases of leprosy affected people worldwide, according to the World Health Organization. Leprosy continues to be an ongoing issue in developing countries.

Leprosy is caused by the bacterium "Mycobacterium leprae," and affects the skin, peripheral nerves, upper respiratory tract and eyes, and can lead to severe disfigurement of the hands, face and feet. It is uncertain how leprosy is spread, and current treatment includes a multi-drug regimen.



The study was funded by the National Institutes of Health and the World Health Organization.

Other researchers include Joshua R. Bieharski, Department of Microbiology, Immunology, and Molecular Genetics and Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Huiying Li, Thomas G. Graeber and David Eisenberg, Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA -- Department of Energy Institute of Genomics and Proteomics, UCLA, Los Angeles; Christoph Meinken, Martin Rollinghoff and Steffen Stenger, Institut fur Klinische Mikrobiologie, Immunologie, und Hygiene, Universitat Erlangen, Erlangen, Germany; Maria-Teresa Ochoa, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Masahiro Yamamura, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan; Anne Burdick, Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Fla.; Euzenir N. Sarno, Leprosy Laboratory Institute Oswaldo Cruz, Rio de Janeiro, Brazil; Manfred Wagner and Thomas H. Rea, Medizinische Kllnik 3, Kllnikum Nurnberg, Nurnberg, Germany; Marco Colonna, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Mo.; Barry R. Bloom, Office of the Dean, Harvard School of Public Health, Boston, Mass.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>