Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA study uses genetic profiling to distinguish types of leprosy

12.09.2003


New approach may provide new way to diagnose, classify and treat diseases



UCLA researchers found a distinction in the gene expression of leprosy that accurately classified two different clinical forms of the disease. This is one of the first studies of its kind where genetic profiling distinguished between disease types, possibly leading to new ways to diagnose and treat all types of diseases.

The new UCLA study, published Sept. 12 in the journal Science, also identified genes belonging to a specific family of cells in the immune system that may provide potent anti-inflammatory or immune suppressant properties. These findings offer more insight into the development of leprosy, as well as new approaches to treat diseases in which the immune system causes tissue damage.


"This study is an important milestone in the new science of using genetic profiling to uncover genes linked to responses that lead to disease progression," said principal investigator Dr. Robert L. Modlin, professor of dermatology and microbiology, immunology and molecular genetics and chief, division of dermatology, David Geffen School of Medicine at UCLA. "The study also provides unanticipated insights into pathogens and targets for therapy."

According to Modlin, the future application of genetic profiling is especially interesting for infectious diseases such as leprosy or even a bioterrorist threat like anthrax.

"With genetic technology, we may be able to quickly distinguish between a common cold and early-stage anthrax, leading to earlier diagnosis and quicker treatment," he noted.

UCLA researchers biopsied 11 leprosy patients’ skin lesions, which is one of the first symptoms of the disease. Using sophisticated genetic technology and statistical methods, researchers compared expression patterns for the 12,000 genes found in the skin lesions. Researchers found that gene expressions differed for the two types of leprosy -- tuberculoid leprosy and lepromatous leprosy.

"If we can predict the clinical course of disease, we can intervene earlier," said Modlin. "This is very important for lepromatous leprosy, a more severe form of the disease that can lead to major nerve damage and disfigurement."

Researchers also found that the major difference between the gene expressions of the two types of leprosy occurred in a specific family of cells in the immune system called LIR or leukocyte immunoglobin-like receptors. Researchers found that a particular cell called LIR-7 was expressed five times more in the lepromatous lesions than in the tuberculoid lesions.

Further tests and genetic comparisons between the two lesion groups found that LIR-7 activation may actually suppress the immune system’s defenses. This may partly explain why some patients suffer from the more severe form of leprosy because these patients’ immune systems may be more compromised.

Researchers then used a tuberculosis bacteria sample to test whether LIR-7 activation would suppress the ability of the immune system to directly combat microbial pathogens. Researchers found that LIR-7 blocked the antimicrobial activity of another cell-surface receptor, called TLR or toll-like receptor. LIR-7 reduced TLR’s immune response activity from 60 percent to 20 percent.

"The immune suppression ability of LIR-7 offers us more insight into the development of infectious diseases like leprosy and also may offer future therapies for autoimmune diseases such as psoriasis or rheumatoid arthritis, where the goal is to turn off or suppress the immune system’s response," said Modlin.

According to Modlin, the next stage of the genetic research will look at leprosy’s various complications, including tissue damage and nerve damage, and try to identify which patients are susceptible to these complications.

Leprosy, one of the world’s oldest known diseases, is a chronic infectious disease. In 2003, more than 630,000 new cases of leprosy affected people worldwide, according to the World Health Organization. Leprosy continues to be an ongoing issue in developing countries.

Leprosy is caused by the bacterium "Mycobacterium leprae," and affects the skin, peripheral nerves, upper respiratory tract and eyes, and can lead to severe disfigurement of the hands, face and feet. It is uncertain how leprosy is spread, and current treatment includes a multi-drug regimen.



The study was funded by the National Institutes of Health and the World Health Organization.

Other researchers include Joshua R. Bieharski, Department of Microbiology, Immunology, and Molecular Genetics and Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Huiying Li, Thomas G. Graeber and David Eisenberg, Departments of Chemistry and Biochemistry and Biological Chemistry, Howard Hughes Medical Institute, UCLA -- Department of Energy Institute of Genomics and Proteomics, UCLA, Los Angeles; Christoph Meinken, Martin Rollinghoff and Steffen Stenger, Institut fur Klinische Mikrobiologie, Immunologie, und Hygiene, Universitat Erlangen, Erlangen, Germany; Maria-Teresa Ochoa, Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles; Masahiro Yamamura, Graduate School of Medicine and Dentistry, Okayama University, Okayama, Japan; Anne Burdick, Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Fla.; Euzenir N. Sarno, Leprosy Laboratory Institute Oswaldo Cruz, Rio de Janeiro, Brazil; Manfred Wagner and Thomas H. Rea, Medizinische Kllnik 3, Kllnikum Nurnberg, Nurnberg, Germany; Marco Colonna, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Mo.; Barry R. Bloom, Office of the Dean, Harvard School of Public Health, Boston, Mass.

Rachel Champeau | EurekAlert!
Further information:
http://www.ucla.edu/

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>