Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Therapy Offers Alternative to Surgery for Liver Tumours

11.09.2003


Research News in the British Journal of Surgery



11 September 2003: Laser light can be delivered in a controlled and predictable manner to destroy tumours. By inserting fibre optic cables through needles, doctors can direct the powerful laser light onto liver tumours – killing the cells and thus eliminating the need for major surgery. A review of recent research shows that this ‘interstitial laser thermotherapy’ (ITL) can be a safe and effective way of removing tumours and improving overall survival.

Cancer in the liver is extremely serious; left untreated, it can kill a person within three to twelve months of diagnosis. The best way of treating this disease is to remove the tumour by conventional surgery, but this is a major operation and is only possible in a limited number of cases.


“ITL allows a greater proportion of patients to be treated than surgery alone, but we need greater understanding of how it works if we are going to make best use of the technology,” says lead-author, M Nikfarjam, who works in the department of Surgery, at the University of Melbourne in Australia. “Advances in laser technology and refinements in techniques may allow ILT to replace surgery as the procedure of choice in selected patients with liver malignancies.”

Technical background

Lasers kill tumours because the energy contained in light particles (photons) is transformed into heat inside the cells. Heating cells to 42-45 oC for 30-60 minutes disrupts vital parts of the cells machinery (enzymes), killing the cells. Increasing the temperature decreases the amount of time needed. With temperatures of between 60oC and 140oC, cell death is almost instantaneous. Between 100 and 300 oC water in the cell vaporises, and above 300 oC the cells are burnt to carbon.

The key to success is to raise the temperature high enough to kill cells quickly, but to avoid carbonisation of the cells. If carbonisation occurs at the tip of the fibre, light is unable to penetrate the tissue. Doctors use either ultrasound scanning or magnetic resonance imaging to visualise the tumour and the fibres while they are giving the treatment.

Current research is focused on determining the optimum equipment and protocol to maximise the killing power of the laser.

Jaida Butler | alfa
Further information:
http://www.interscience.wiley.com

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>