Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Therapy Offers Alternative to Surgery for Liver Tumours

11.09.2003


Research News in the British Journal of Surgery



11 September 2003: Laser light can be delivered in a controlled and predictable manner to destroy tumours. By inserting fibre optic cables through needles, doctors can direct the powerful laser light onto liver tumours – killing the cells and thus eliminating the need for major surgery. A review of recent research shows that this ‘interstitial laser thermotherapy’ (ITL) can be a safe and effective way of removing tumours and improving overall survival.

Cancer in the liver is extremely serious; left untreated, it can kill a person within three to twelve months of diagnosis. The best way of treating this disease is to remove the tumour by conventional surgery, but this is a major operation and is only possible in a limited number of cases.


“ITL allows a greater proportion of patients to be treated than surgery alone, but we need greater understanding of how it works if we are going to make best use of the technology,” says lead-author, M Nikfarjam, who works in the department of Surgery, at the University of Melbourne in Australia. “Advances in laser technology and refinements in techniques may allow ILT to replace surgery as the procedure of choice in selected patients with liver malignancies.”

Technical background

Lasers kill tumours because the energy contained in light particles (photons) is transformed into heat inside the cells. Heating cells to 42-45 oC for 30-60 minutes disrupts vital parts of the cells machinery (enzymes), killing the cells. Increasing the temperature decreases the amount of time needed. With temperatures of between 60oC and 140oC, cell death is almost instantaneous. Between 100 and 300 oC water in the cell vaporises, and above 300 oC the cells are burnt to carbon.

The key to success is to raise the temperature high enough to kill cells quickly, but to avoid carbonisation of the cells. If carbonisation occurs at the tip of the fibre, light is unable to penetrate the tissue. Doctors use either ultrasound scanning or magnetic resonance imaging to visualise the tumour and the fibres while they are giving the treatment.

Current research is focused on determining the optimum equipment and protocol to maximise the killing power of the laser.

Jaida Butler | alfa
Further information:
http://www.interscience.wiley.com

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>