Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser Therapy Offers Alternative to Surgery for Liver Tumours

11.09.2003


Research News in the British Journal of Surgery



11 September 2003: Laser light can be delivered in a controlled and predictable manner to destroy tumours. By inserting fibre optic cables through needles, doctors can direct the powerful laser light onto liver tumours – killing the cells and thus eliminating the need for major surgery. A review of recent research shows that this ‘interstitial laser thermotherapy’ (ITL) can be a safe and effective way of removing tumours and improving overall survival.

Cancer in the liver is extremely serious; left untreated, it can kill a person within three to twelve months of diagnosis. The best way of treating this disease is to remove the tumour by conventional surgery, but this is a major operation and is only possible in a limited number of cases.


“ITL allows a greater proportion of patients to be treated than surgery alone, but we need greater understanding of how it works if we are going to make best use of the technology,” says lead-author, M Nikfarjam, who works in the department of Surgery, at the University of Melbourne in Australia. “Advances in laser technology and refinements in techniques may allow ILT to replace surgery as the procedure of choice in selected patients with liver malignancies.”

Technical background

Lasers kill tumours because the energy contained in light particles (photons) is transformed into heat inside the cells. Heating cells to 42-45 oC for 30-60 minutes disrupts vital parts of the cells machinery (enzymes), killing the cells. Increasing the temperature decreases the amount of time needed. With temperatures of between 60oC and 140oC, cell death is almost instantaneous. Between 100 and 300 oC water in the cell vaporises, and above 300 oC the cells are burnt to carbon.

The key to success is to raise the temperature high enough to kill cells quickly, but to avoid carbonisation of the cells. If carbonisation occurs at the tip of the fibre, light is unable to penetrate the tissue. Doctors use either ultrasound scanning or magnetic resonance imaging to visualise the tumour and the fibres while they are giving the treatment.

Current research is focused on determining the optimum equipment and protocol to maximise the killing power of the laser.

Jaida Butler | alfa
Further information:
http://www.interscience.wiley.com

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>