Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIAID launches malaria vaccine trial in Africa

10.09.2003


The National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health, has reached a milestone in its efforts to support accelerated development of malaria vaccines. Working with an international group of public and private partners, NIAID has launched its first trial of a candidate malaria vaccine in a country where malaria is endemic. The Phase I trial, taking place in Mali, seeks to confirm the safety and immunogenicity in adults of a candidate vaccine called FMP-1.



A key component of the NIAID Plan for Research for Malaria Vaccine Development has been to establish, in malaria-endemic areas, research centers that can support the complex clinical development of malaria vaccines. Conducting a malaria vaccine trial in Africa is important because more than 90 percent of malaria deaths occur in Africa, and the great majority of these deaths are in young children. Each year, malaria infects an estimated 300 to 500 million people worldwide and causes more than 1 million deaths, according to the World Health Organization.

This trial, the first to be conducted by Malian researchers from the Malaria Research and Training Center in the Department of Epidemiology of Parasitic Diseases at the Medical School of the University of Bamako, is taking place in Bandiagara, Mali, with NIAID support. It reflects the result of many years of effort by a group of organizations dedicated to creating an effective malaria vaccine. In addition to NIAID and the University of Bamako, the collaborators include the University of Maryland at Baltimore; NIAID’s Malaria Vaccine Development Unit; the Malian Ministries of Health and Education; the Walter Reed Army Institute of Research (WRAIR); GlaxoSmithKline Biologicals (GSK); the U.S. Agency for International Development (USAID); and the World Health Organization (WHO).


Developed by WRAIR in collaboration with GSK Biologicals, and with support from USAID, the FMP-1 vaccine has already proved safe and immunogenic in two small Phase I and Phase IIa studies in the United States and an additional Phase I study in Kenya. The vaccine contains an experimental adjuvant called AS02A developed by GSK and intended to enhance the immune response.

The trial will enroll 40 adults between the ages of 18 and 55. Half of the volunteers will receive the malaria vaccine and half will serve as a control group by receiving a licensed rabies vaccine. Each volunteer will receive three injections over two months, and the researchers will follow each volunteer for one year, monitoring the long-term safety of the vaccine and analyzing the immune responses against the Plasmodium falciparum malaria parasite.


Media inquiries can be directed to the NIAID OCPL media group at 301-402-1663.

NIAID is a component of the National Institutes of Health (NIH), which is an agency of the Department of Health and Human Services. In addition to malaria research, NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, autoimmune disorders, asthma and allergies.

Prepared by:
Office of Communications and Public Liaison
National Institute of Allergy and Infectious Diseases
National Institutes of Health
Bethesda, MD 20892

U.S. Department of Health and Human Services

Laurie Doepel | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>