Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the link between fat and high blood pressure

10.09.2003


How fat contributes to high blood pressure is the focus of a new study at the Medical College of Georgia that is part of a National Institutes of Health initiative to understand the relationship between obesity and cardiovascular disease.


Drs. Gregory A. Harshfield and Paule Barbeau are looking at how fat contributes to high blood pressure.



"You have obesity and you have hypertension. Where is the link?" says Dr. Gregory A. Harshfield, principal investigator on the $1.4 million grant from the NIH’s National Heart, Lung and Blood Institute that will study 160 adolescents, half lean and half overweight or obese, in pursuit of that link. Dr. Paule Barbeau, exercise physiologist, is a co-investigator

Obesity is a risk factor for high blood pressure, which is a major risk factor for cardiovascular disease.


The Augusta researchers and others leaders in the field of hypertension say that obesity may increase pressure by increasing volume rather than constriction.

"We think it’s increased volume because of sodium handling," Dr. Harshfield says. "When we put people under stress, the normal response is to increase your blood pressure through vasoconstriction." The kidneys also hold onto sodium to help increase blood volume throughout the body. As the stress ends, so should these normal physiological responses.

But Dr. Harshfield’s studies at MCG’s Georgia Prevention Institute have shown that some people keep holding onto sodium long after the stress has gone, delaying a process called natriuresis, the body’s way of eliminating sodium. His studies have shown this mechanism is impaired in about 30 percent of adolescent blacks and 15 percent of adolescent whites; the prolonged, elevated pressures may contribute to the development of hypertension.

Fat, or adipose tissue, was once considered storage material only, says Dr. Barbeau. "Now we realize that it secretes all kinds of substances, such as angiotensinogen (which constricts blood vessels) and leptin. The more fat you have, the more of these substances you make."

And different fat depots secrete different substances. Subcutaneous fat, or fat under the skin, secretes leptin, an appetite suppressant also involved in functions such as reproduction and blood pressure regulation. Visceral fat, packed in and around the organs in the abdominal cavity, secretes angiotensinogen, which makes angiotensin II, a powerful vasoconstrictor that also directs the kidneys to absorb more sodium.

"When you gain weight, leptin is supposed to be secreted by the adipose tissue and that tells your brain, ’Don’t eat that much,’" Dr. Barbeau says. "But for some reason, in obese people, that feedback loop doesn’t work any more," she says, equating the scenario to a type 2 diabetic’s resistance to insulin.

Another leptin-driven system seems to fail as well in the obese and contribute to hypertension. Leptin tells the brain to keep producing the neurotransmitter catecholamine which gears up the stress-triggered sympathetic nervous system. Catecholamine, in turn, is supposed to shut down leptin production, but, inexplicably, that doesn’t happen either, says Dr. Harshfield.

The researchers say that stress increases angiotensin II levels and therefore blood pressure. Furthermore, in obese individuals, fat-produced leptin and angiotensinogen keep the blood pressure up by interfering with the natural process of sodium excretion that should occur when the stress is gone. The net result may be early development of hypertension and the damage it causes major organs such as the heart and kidneys.

"How stress interacts with fat in the production of damage to the kidneys is what we are looking at primarily," Dr. Harshfield says. "I think what we are going to see is that in the high-fat kids, the stress will produce greater sodium retention and longer levels of elevated blood pressure."

The MCG researchers began recruiting the 15- to 19-year-olds this fall, a mixture of black and white males and females. Each participant engages in a protocol developed by Dr. Harshfield that includes two hours of rest followed by an hour-long stressful video game, then two more hours of rest. Blood pressure and sodium excretion are measured throughout. Participants are put on a diet for three days prior to the test protocol to regulate their sodium levels. They also get a dual-energy X-ray absorptiometry, or DXA, study to measure body fat, and an MRI at MCG Medical Center to assess visceral fat in the abdominal cavity, as well as studies to look at the size of the heart’s pumping chamber and kidney function.

"This is a logical place to go with the work we already are doing," Dr. Harshfield says, which is why he opted to pursue the proposal request from the National Heart, Lung and Blood Institute for novel approaches to help clarify the biologic basis of obesity-related cardiovascular problems such as hypertension and atherosclerosis.

Today more than 60 percent of Americans are either overweight or obese and Drs. Harshfield and Barbeau have seen some of the ill effects in the young people who come to the Georgia Prevention Institute with hopes of being a healthy participant in a study only to learn they already have high blood pressure or other problems.

"This is a highly meritorious application from an established productive (principal investigator) and outstanding investigative team," reviewers of the grant proposal wrote. "The goal of this study is to test a hypothesis that links adolescent obesity to cardiovascular disease through impaired stress-evoked pressure natriuresis. This is an interesting and novel hypothesis, and will be adequately approached by the proposed studies. Whether or not the hypothesis turns out to be correct, important new data will result from the proposed study."


For more information about study participation, call the Georgia Prevention Institute at (706) 721-1755.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>